slim_torch_cifar10.py 5.64 KB
Newer Older
Tang Lang's avatar
Tang Lang committed
1
import math
Cjkkkk's avatar
Cjkkkk committed
2
import os
Cjkkkk's avatar
Cjkkkk committed
3
import argparse
Tang Lang's avatar
Tang Lang committed
4
5
6
7
8
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from nni.compression.torch import SlimPruner
Tang Lang's avatar
Tang Lang committed
9
from models.cifar10.vgg import VGG
Tang Lang's avatar
Tang Lang committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

def updateBN(model):
    for m in model.modules():
        if isinstance(m, nn.BatchNorm2d):
            m.weight.grad.data.add_(0.0001 * torch.sign(m.weight.data))  # L1


def train(model, device, train_loader, optimizer, sparse_bn=False):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        # L1 regularization on BN layer
        if sparse_bn:
            updateBN(model)
        optimizer.step()
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, acc))
    return acc


def main():
Cjkkkk's avatar
Cjkkkk committed
53
54
55
56
57
58
59
    parser = argparse.ArgumentParser("multiple gpu with pruning")
    parser.add_argument("--epochs", type=int, default=160)
    parser.add_argument("--retrain", default=False, action="store_true")
    parser.add_argument("--parallel", default=False, action="store_true")

    args = parser.parse_args()

Tang Lang's avatar
Tang Lang committed
60
    torch.manual_seed(0)
Cjkkkk's avatar
Cjkkkk committed
61
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Tang Lang's avatar
Tang Lang committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    train_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=True, download=True,
                         transform=transforms.Compose([
                             transforms.Pad(4),
                             transforms.RandomCrop(32),
                             transforms.RandomHorizontalFlip(),
                             transforms.ToTensor(),
                             transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
                         ])),
        batch_size=64, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        ])),
        batch_size=200, shuffle=False)

Tang Lang's avatar
Tang Lang committed
79
    model = VGG(depth=19)
Tang Lang's avatar
Tang Lang committed
80
81
    model.to(device)
    # Train the base VGG-19 model
Cjkkkk's avatar
Cjkkkk committed
82
83
84
85
86
87
88
89
90
91
92
93
    if args.retrain:
        print('=' * 10 + 'Train the unpruned base model' + '=' * 10)
        epochs = args.epochs
        optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
        for epoch in range(epochs):
            if epoch in [epochs * 0.5, epochs * 0.75]:
                for param_group in optimizer.param_groups:
                    param_group['lr'] *= 0.1
            print("epoch {}".format(epoch))
            train(model, device, train_loader, optimizer, True)
            test(model, device, test_loader)
        torch.save(model.state_dict(), 'vgg19_cifar10.pth')
Cjkkkk's avatar
Cjkkkk committed
94
95
96
    else:
        assert os.path.isfile('vgg19_cifar10.pth'), "can not find checkpoint 'vgg19_cifar10.pth'"
        model.load_state_dict(torch.load('vgg19_cifar10.pth'))
Tang Lang's avatar
Tang Lang committed
97
98
99
100
101
102
103
104
105
106
    # Test base model accuracy
    print('=' * 10 + 'Test the original model' + '=' * 10)
    test(model, device, test_loader)
    # top1 = 93.60%

    # Pruning Configuration, in paper 'Learning efficient convolutional networks through network slimming',
    configure_list = [{
        'sparsity': 0.7,
        'op_types': ['BatchNorm2d'],
    }]
Cjkkkk's avatar
Cjkkkk committed
107
    
Tang Lang's avatar
Tang Lang committed
108
109
110
111
    # Prune model and test accuracy without fine tuning.
    print('=' * 10 + 'Test the pruned model before fine tune' + '=' * 10)
    pruner = SlimPruner(model, configure_list)
    model = pruner.compress()
Cjkkkk's avatar
Cjkkkk committed
112
113
114
115
116
117
118
119
    if args.parallel:
        if torch.cuda.device_count() > 1:
            print("use {} gpus for pruning".format(torch.cuda.device_count()))
            model = nn.DataParallel(model)
            # model = nn.DataParallel(model, device_ids=[0, 1])
        else:
            print("only detect 1 gpu, fall back")
    model.to(device)
Tang Lang's avatar
Tang Lang committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    # Fine tune the pruned model for 40 epochs and test accuracy
    print('=' * 10 + 'Fine tuning' + '=' * 10)
    optimizer_finetune = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
    best_top1 = 0
    for epoch in range(40):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer_finetune)
        top1 = test(model, device, test_loader)
        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path='pruned_vgg19_cifar10.pth', mask_path='mask_vgg19_cifar10.pth')

    # Test the exported model
    print('=' * 10 + 'Test the export pruned model after fine tune' + '=' * 10)
Tang Lang's avatar
Tang Lang committed
137
    new_model = VGG(depth=19)
Tang Lang's avatar
Tang Lang committed
138
139
140
    new_model.to(device)
    new_model.load_state_dict(torch.load('pruned_vgg19_cifar10.pth'))
    test(new_model, device, test_loader)
Tang Lang's avatar
Tang Lang committed
141
    # top1 = 93.74%
Tang Lang's avatar
Tang Lang committed
142
143
144
145


if __name__ == '__main__':
    main()