slim_torch_cifar10.py 4.79 KB
Newer Older
Tang Lang's avatar
Tang Lang committed
1
2
3
4
5
6
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from nni.compression.torch import SlimPruner
Tang Lang's avatar
Tang Lang committed
7
from models.cifar10.vgg import VGG
Tang Lang's avatar
Tang Lang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


def updateBN(model):
    for m in model.modules():
        if isinstance(m, nn.BatchNorm2d):
            m.weight.grad.data.add_(0.0001 * torch.sign(m.weight.data))  # L1


def train(model, device, train_loader, optimizer, sparse_bn=False):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        # L1 regularization on BN layer
        if sparse_bn:
            updateBN(model)
        optimizer.step()
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, acc))
    return acc


def main():
    torch.manual_seed(0)
    device = torch.device('cuda')
    train_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=True, download=True,
                         transform=transforms.Compose([
                             transforms.Pad(4),
                             transforms.RandomCrop(32),
                             transforms.RandomHorizontalFlip(),
                             transforms.ToTensor(),
                             transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
                         ])),
        batch_size=64, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        ])),
        batch_size=200, shuffle=False)

Tang Lang's avatar
Tang Lang committed
71
    model = VGG(depth=19)
Tang Lang's avatar
Tang Lang committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    model.to(device)

    # Train the base VGG-19 model
    print('=' * 10 + 'Train the unpruned base model' + '=' * 10)
    epochs = 160
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
    for epoch in range(epochs):
        if epoch in [epochs * 0.5, epochs * 0.75]:
            for param_group in optimizer.param_groups:
                param_group['lr'] *= 0.1
        train(model, device, train_loader, optimizer, True)
        test(model, device, test_loader)
    torch.save(model.state_dict(), 'vgg19_cifar10.pth')

    # Test base model accuracy
    print('=' * 10 + 'Test the original model' + '=' * 10)
    model.load_state_dict(torch.load('vgg19_cifar10.pth'))
    test(model, device, test_loader)
    # top1 = 93.60%

    # Pruning Configuration, in paper 'Learning efficient convolutional networks through network slimming',
    configure_list = [{
        'sparsity': 0.7,
        'op_types': ['BatchNorm2d'],
    }]

    # Prune model and test accuracy without fine tuning.
    print('=' * 10 + 'Test the pruned model before fine tune' + '=' * 10)
    pruner = SlimPruner(model, configure_list)
    model = pruner.compress()
    test(model, device, test_loader)
    # top1 = 93.55%

    # Fine tune the pruned model for 40 epochs and test accuracy
    print('=' * 10 + 'Fine tuning' + '=' * 10)
    optimizer_finetune = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
    best_top1 = 0
    for epoch in range(40):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer_finetune)
        top1 = test(model, device, test_loader)
        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path='pruned_vgg19_cifar10.pth', mask_path='mask_vgg19_cifar10.pth')

    # Test the exported model
    print('=' * 10 + 'Test the export pruned model after fine tune' + '=' * 10)
Tang Lang's avatar
Tang Lang committed
122
    new_model = VGG(depth=19)
Tang Lang's avatar
Tang Lang committed
123
124
125
    new_model.to(device)
    new_model.load_state_dict(torch.load('pruned_vgg19_cifar10.pth'))
    test(new_model, device, test_loader)
Tang Lang's avatar
Tang Lang committed
126
    # top1 = 93.74%
Tang Lang's avatar
Tang Lang committed
127
128
129
130


if __name__ == '__main__':
    main()