test_convert.py 23.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
Reference: We use tested models from https://github.com/pytorch/pytorch/blob/master/test/jit/test_models.py.
"""

import os
import sys
import unittest

import numpy as np
import torch
import torch.nn.functional as F
import torchvision

import nni.retiarii.nn.pytorch as nn
15
from nni.retiarii import basic_unit
16
from nni.retiarii.codegen import model_to_pytorch_script
17
from nni.retiarii.utils import original_state_dict_hooks
18

19
20
from .convert_mixin import ConvertMixin, ConvertWithShapeMixin

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

39
40
# NOTE: serialize module cannot be placed within class or function
@basic_unit
41
42
43
44
45
46
47
48
49
50
51
class Linear(nn.Module):
    def __init__(self, d_embed, d_proj):
        super().__init__()
        self.linear = nn.Linear(d_embed, d_proj)

    def forward(self, input):
        if len(input.size()) <= 2:
            return self.linear(input)
        size = input.size()[:2]
        out = self.linear(input.view(size[0] * size[1], -1))
        return out.view(size[0], size[1], -1)
52

53
class TestConvert(unittest.TestCase, ConvertMixin):
54
55

    def checkExportImport(self, model, input):
56
        model_ir = self._convert_model(model, input)
57
58
59
60
61
        model_code = model_to_pytorch_script(model_ir)

        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        converted_model = exec_vars['converted_model']
62
63
        with original_state_dict_hooks(converted_model):
            converted_model.load_state_dict(dict(model.state_dict()))
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        with torch.no_grad():
            expected_output = model.eval()(*input)
            converted_output = converted_model.eval()(*input)
        self.assertEqual(len(converted_output), len(expected_output))
        for a, b in zip(converted_output, expected_output):
            self.assertLess((a - b).abs().max().item(), 1E-4)
        return converted_model

    def setUp(self):
        # FIXME
        import nni.retiarii.debug_configs
        nni.retiarii.debug_configs.framework = 'pytorch'

    def test_dcgan_models(self):
        class DCGANGenerator(nn.Module):
            def __init__(self, nz, ngf, nc):
                super(DCGANGenerator, self).__init__()
                self.main = nn.Sequential(
                    # input is Z, going into a convolution
                    nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
                    nn.BatchNorm2d(ngf * 8),
                    nn.ReLU(True),
                    # state size. (ngf*8) x 4 x 4
                    nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 4),
                    nn.ReLU(True),
                    # state size. (ngf*4) x 8 x 8
                    nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 2),
                    nn.ReLU(True),
                    # state size. (ngf*2) x 16 x 16
                    nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf),
                    nn.ReLU(True),
                    # state size. (ngf) x 32 x 32
                    nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
                    nn.Tanh()
                    # state size. (nc) x 64 x 64
                )

            def forward(self, input):
                return self.main(input)

        class DCGANDiscriminator(nn.Module):
            def __init__(self, nc, ndf):
                super(DCGANDiscriminator, self).__init__()
                self.main = nn.Sequential(
                    # input is (nc) x 64 x 64
                    nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf) x 32 x 32
                    nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 2),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*2) x 16 x 16
                    nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 4),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*4) x 8 x 8
                    nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 8),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*8) x 4 x 4
                    nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
                    nn.Sigmoid()
                )

            def forward(self, input):
                return self.main(input).view(-1, 1).squeeze(1)

        bs, nz, ngf, nc, ndf = 5, 6, 9, 3, 10
        input = (torch.rand(bs, nz, 1, 1),)
        model = DCGANGenerator(nz, ngf, nc)
        self.checkExportImport(model, input)

    def test_neural_style(self):
140
        class TransformerNet(nn.Module):
141
142
143
144
            def __init__(self):
                super(TransformerNet, self).__init__()
                # Initial convolution layers
                self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
145
                self.in1 = nn.InstanceNorm2d(32, affine=True)
146
                self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
147
                self.in2 = nn.InstanceNorm2d(64, affine=True)
148
                self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
149
                self.in3 = nn.InstanceNorm2d(128, affine=True)
150
151
152
153
154
155
156
157
                # Residual layers
                self.res1 = ResidualBlock(128)
                self.res2 = ResidualBlock(128)
                self.res3 = ResidualBlock(128)
                self.res4 = ResidualBlock(128)
                self.res5 = ResidualBlock(128)
                # Upsampling Layers
                self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
158
                self.in4 = nn.InstanceNorm2d(64, affine=True)
159
                self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
160
                self.in5 = nn.InstanceNorm2d(32, affine=True)
161
162
                self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
                # Non-linearities
163
                self.relu = nn.ReLU()
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

            def forward(self, X):
                y = self.relu(self.in1(self.conv1(X)))
                y = self.relu(self.in2(self.conv2(y)))
                y = self.relu(self.in3(self.conv3(y)))
                y = self.res1(y)
                y = self.res2(y)
                y = self.res3(y)
                y = self.res4(y)
                y = self.res5(y)
                y = self.relu(self.in4(self.deconv1(y)))
                y = self.relu(self.in5(self.deconv2(y)))
                y = self.deconv3(y)
                return y

179
        class ConvLayer(nn.Module):
180
181
182
            def __init__(self, in_channels, out_channels, kernel_size, stride):
                super(ConvLayer, self).__init__()
                reflection_padding = kernel_size // 2
183
184
                self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
                self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
185
186
187
188
189
190

            def forward(self, x):
                out = self.reflection_pad(x)
                out = self.conv2d(out)
                return out

191
        class ResidualBlock(nn.Module):
192
193
194
195
196
197
198
199
            """ResidualBlock
            introduced in: https://arxiv.org/abs/1512.03385
            recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
            """

            def __init__(self, channels):
                super(ResidualBlock, self).__init__()
                self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
200
                self.in1 = nn.InstanceNorm2d(channels, affine=True)
201
                self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
202
203
                self.in2 = nn.InstanceNorm2d(channels, affine=True)
                self.relu = nn.ReLU()
204
205
206
207
208
209
210
211

            def forward(self, x):
                residual = x
                out = self.relu(self.in1(self.conv1(x)))
                out = self.in2(self.conv2(out))
                out = out + residual
                return out

212
        class UpsampleConvLayer(nn.Module):
213
214
215
216
217
218
219
220
221
222
            """UpsampleConvLayer
            Upsamples the input and then does a convolution. This method gives better results
            compared to ConvTranspose2d.
            ref: http://distill.pub/2016/deconv-checkerboard/
            """

            def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
                super(UpsampleConvLayer, self).__init__()
                self.upsample = upsample
                if upsample:
223
                    self.upsample_layer = nn.Upsample(mode='nearest', scale_factor=upsample)
224
                reflection_padding = kernel_size // 2
225
226
                self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
                self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

            def forward(self, x):
                x_in = x
                if self.upsample:
                    x_in = self.upsample_layer(x_in)
                out = self.reflection_pad(x_in)
                out = self.conv2d(out)
                return out

        model = TransformerNet()
        input = (torch.rand(5, 3, 16, 16),)
        self.checkExportImport(model, input)

    def test_mnist(self):
        # eval() is present because dropout makes this nondeterministic
        self.checkExportImport(MnistNet().eval(), (torch.rand(5, 1, 28, 28),))

    def test_reinforcement_learning(self):
        class Policy(nn.Module):
            def __init__(self):
                super(Policy, self).__init__()
                self.affine1 = nn.Linear(4, 128)
                self.affine2 = nn.Linear(128, 2)

            def forward(self, x):
                x = F.relu(self.affine1(x))
                action_scores = self.affine2(x)
                return F.softmax(action_scores, dim=1)

        self.checkExportImport(Policy(), (torch.rand(1, 4),))

    def test_snli(self):

        class Encoder(nn.Module):

            def __init__(self, config):
                super(Encoder, self).__init__()
264
265
266
267
268
269
270
271
272
                #self.config = config
                input_size = config["d_proj"] if config["projection"] else config["d_embed"]
                dropout = 0 if config["n_layers"] == 1 else config["dp_ratio"]
                self.rnn = nn.LSTM(input_size=input_size, hidden_size=config["d_hidden"],
                                   num_layers=config["n_layers"], dropout=dropout,
                                   bidirectional=config["birnn"])
                self.n_cells = config["n_cells"]
                self.d_hidden = config["d_hidden"]
                self.birnn = config["birnn"]
273
274
275

            def forward(self, inputs):
                batch_size = inputs.size()[1]
276
                state_shape = self.n_cells, batch_size, self.d_hidden
277
278
                h0 = c0 = inputs.new_zeros(state_shape)
                outputs, (ht, ct) = self.rnn(inputs, (h0, c0))
279
                return ht[-1] if not self.birnn else ht[-2:].transpose(0, 1).contiguous().view(batch_size, -1)
280
281
282
283
284

        class SNLIClassifier(nn.Module):

            def __init__(self, config):
                super(SNLIClassifier, self).__init__()
285
286
                self.embed = nn.Embedding(config["n_embed"], config["d_embed"])
                self.projection = Linear(config["d_embed"], config["d_proj"])
287
                self.encoder = Encoder(config)
288
                self.dropout = nn.Dropout(p=config["dp_ratio"])
289
                self.relu = nn.ReLU()
290
291
                seq_in_size = 2 * config["d_hidden"]
                if config["birnn"]:
292
293
294
295
296
297
298
299
300
301
302
303
                    seq_in_size *= 2
                lin_config = [seq_in_size] * 2
                self.out = nn.Sequential(
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
304
305
306
                    Linear(seq_in_size, config["d_out"]))
                self.fix_emb = config["fix_emb"]
                self.project = config["projection"]
307
308
309
310

            def forward(self, premise, hypothesis):
                prem_embed = self.embed(premise)
                hypo_embed = self.embed(hypothesis)
311
                if self.fix_emb:
312
313
                    prem_embed = prem_embed.detach()
                    hypo_embed = hypo_embed.detach()
314
                if self.project:
315
316
317
318
319
320
321
                    prem_embed = self.relu(self.projection(prem_embed))
                    hypo_embed = self.relu(self.projection(hypo_embed))
                premise = self.encoder(prem_embed)
                hypothesis = self.encoder(hypo_embed)
                scores = self.out(torch.cat([premise, hypothesis], 1))
                return scores

322
323
324
325
326
327
328
329
330
331
332
333
334
        Config = {
            "n_embed": 100,
            "d_embed": 100,
            "d_proj": 300,
            "dp_ratio": 0.0,  # For deterministic testing TOD": change by fixing seed in checkTrace?,
            "d_hidden": 30,
            "birnn": True,
            "d_out": 300,
            "fix_emb": True,
            "projection": True,
            "n_layers": 2,
            "n_cells": 4  # 2 * n_layers because birnn = True,
        }
335
336
337
338

        premise = torch.LongTensor(48, 64).random_(0, 100)
        hypothesis = torch.LongTensor(24, 64).random_(0, 100)

339
        self.checkExportImport(SNLIClassifier(Config), (premise, hypothesis))
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

    def test_super_resolution(self):
        class Net(nn.Module):

            def __init__(self, upscale_factor):
                super(Net, self).__init__()

                self.relu = nn.ReLU()
                self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
                self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
                self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
                self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
                self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

            def forward(self, x):
                x = self.relu(self.conv1(x))
                x = self.relu(self.conv2(x))
                x = self.relu(self.conv3(x))
                x = self.pixel_shuffle(self.conv4(x))
                return x

        net = Net(upscale_factor=4)
        self.checkExportImport(net, (torch.rand(5, 1, 32, 32),))

364
    @unittest.skip('Need to support Loop')  # FIXME
365
    def test_time_sequence_prediction(self):
366
        class Sequence(nn.Module): #torch.jit.ScriptModule
367
368
369
370
371
372
            def __init__(self):
                super(Sequence, self).__init__()
                self.lstm1 = nn.LSTMCell(1, 51)
                self.lstm2 = nn.LSTMCell(51, 51)
                self.linear = nn.Linear(51, 1)

373
            #@torch.jit.script_method
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            def forward(self, input):
                # TODO: add future as input with default val
                # see https://github.com/pytorch/pytorch/issues/8724
                outputs = torch.empty((3, 0))
                h_t = torch.zeros((3, 51))
                c_t = torch.zeros((3, 51))
                h_t2 = torch.zeros((3, 51))
                c_t2 = torch.zeros((3, 51))

                output = torch.zeros([3, 51])
                future = 2

                # TODO: chunk call should appear as the for loop iterable
                # We hard-code it to 4 for now.
                a, b, c, d = input.chunk(input.size(1), dim=1)
                for input_t in (a, b, c, d):
                    h_t, c_t = self.lstm1(input_t, (h_t, c_t))
                    h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
                    output = self.linear(h_t2)
                    outputs = torch.cat((outputs, output), 1)
                for _ in range(future):  # if we should predict the future
                    h_t, c_t = self.lstm1(output, (h_t, c_t))
                    h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
                    output = self.linear(h_t2)
                    outputs = torch.cat((outputs, output), 1)
                return outputs

        class Traced(nn.Module):
            def __init__(self):
                super(Traced, self).__init__()
                self.seq = Sequence()

            def forward(self, input):
                return self.seq.forward(input)

        self.checkExportImport(Traced(), (torch.rand(3, 4),))

411
    @unittest.skip('incorrectly assigned weights')  # FIXME
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    def test_vae(self):
        class VAE(nn.Module):
            def __init__(self):
                super(VAE, self).__init__()

                self.fc1 = nn.Linear(784, 400)
                self.fc21 = nn.Linear(400, 20)
                self.fc22 = nn.Linear(400, 20)
                self.fc3 = nn.Linear(20, 400)
                self.fc4 = nn.Linear(400, 784)

            def encode(self, x):
                h1 = F.relu(self.fc1(x))
                return self.fc21(h1), self.fc22(h1)

            def reparameterize(self, mu, logvar):
                if self.training:
                    std = torch.exp(0.5 * logvar)
                    eps = torch.randn_like(std)
                    return eps.mul(std).add_(mu)
                else:
                    return mu

            def decode(self, z):
                h3 = F.relu(self.fc3(z))
                return torch.sigmoid(self.fc4(h3))

            def forward(self, x):
                mu, logvar = self.encode(x.view(-1, 784))
                z = self.reparameterize(mu, logvar)
                return self.decode(z), mu, logvar

        self.checkExportImport(VAE().eval(), (torch.rand(128, 1, 28, 28),))

    def test_torchvision_resnet18(self):
447
448
449
450
451
452
        from .inject_nn import inject_pytorch_nn, remove_inject_pytorch_nn
        try:
            inject_pytorch_nn()
            self.checkExportImport(torchvision.models.resnet18().eval(), (torch.ones(1, 3, 224, 224),))
        finally:
            remove_inject_pytorch_nn()
453
454
455
456
457
458
459
460
461
462
463

    def test_resnet(self):
        def conv1x1(in_planes, out_planes, stride=1):
            """1x1 convolution"""
            return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

        def conv3x3(in_planes, out_planes, stride=1):
            """3x3 convolution with padding"""
            return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                             padding=1, bias=False)

464
        class BasicBlock(nn.Module): #torch.jit.ScriptModule
465
466
467
468
469
470
471
472
473
474
475
476
477
            expansion = 1
            __constants__ = ['downsample']

            def __init__(self, inplanes, planes, stride=1, downsample=None):
                super(BasicBlock, self).__init__()
                self.conv1 = conv3x3(inplanes, planes, stride)
                self.bn1 = nn.BatchNorm2d(planes)
                self.relu = nn.ReLU(inplace=True)
                self.conv2 = conv3x3(planes, planes)
                self.bn2 = nn.BatchNorm2d(planes)
                self.downsample = downsample
                self.stride = stride

478
479
            # NOTE: jit cannot be annotated, otherwise, module id is not matched for recorded arguments
            #@torch.jit.script_method
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            def forward(self, x):
                residual = x

                out = self.conv1(x)
                out = self.bn1(out)
                out = self.relu(out)

                out = self.conv2(out)
                out = self.bn2(out)

                if self.downsample is not None:
                    residual = self.downsample(x)

                out += residual
                out = self.relu(out)

                return out

498
499
        # NOTE: cannot inherit torch.jit.ScriptModule, otherwise, there would be error: 'RecursiveScriptModule' object has no attribute 'graph'
        class ResNet(nn.Module): #torch.jit.ScriptModule
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
            __constants__ = ['layer1', 'layer2', 'layer3', 'layer4']

            def __init__(self, block, layers, num_classes=1000):
                super(ResNet, self).__init__()
                self.inplanes = 64
                self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                       bias=False)
                self.bn1 = nn.BatchNorm2d(64)
                self.relu = nn.ReLU(inplace=True)
                self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                self.layer1 = self._make_layer(block, 64, layers[0])
                self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
                self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
                self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(512 * block.expansion, num_classes)

                for m in self.modules():
                    if isinstance(m, nn.Conv2d):
                        torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    elif isinstance(m, nn.BatchNorm2d):
                        torch.nn.init.constant_(m.weight, 1)
                        torch.nn.init.constant_(m.bias, 0)

            def _make_layer(self, block, planes, blocks, stride=1):
                downsample = None
                if stride != 1 or self.inplanes != planes * block.expansion:
                    downsample = nn.Sequential(
                        conv1x1(self.inplanes, planes * block.expansion, stride),
                        nn.BatchNorm2d(planes * block.expansion),
                    )

                layers = []
                layers.append(block(self.inplanes, planes, stride, downsample))
                self.inplanes = planes * block.expansion
                for _ in range(1, blocks):
                    layers.append(block(self.inplanes, planes))

                return nn.Sequential(*layers)

540
541
            # NOTE: jit cannot be annotated, otherwise, module id is not matched for recorded arguments
            #@torch.jit.script_method
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
            def forward(self, x):
                x = self.conv1(x)
                x = self.bn1(x)
                x = self.relu(x)
                x = self.maxpool(x)

                x = self.layer1(x)
                x = self.layer2(x)
                x = self.layer3(x)
                x = self.layer4(x)

                x = self.avgpool(x)
                x = x.view(x.size(0), -1)
                x = self.fc(x)

                return x

        resnet18 = ResNet(BasicBlock, [2, 2, 2, 2])

561
        self.checkExportImport(resnet18, (torch.randn(1, 3, 224, 224),))
562
563

    def test_alexnet(self):
564
565
566
567
568
569
570
571
        from .inject_nn import inject_pytorch_nn, remove_inject_pytorch_nn
        try:
            inject_pytorch_nn()
            x = torch.ones(1, 3, 224, 224)
            model = torchvision.models.AlexNet()
            self.checkExportImport(model, (x,))
        finally:
            remove_inject_pytorch_nn()
572
573
574

class TestConvertWithShape(TestConvert, ConvertWithShapeMixin):
    pass