QAT_torch_quantizer.py 3.09 KB
Newer Older
Cjkkkk's avatar
Cjkkkk committed
1
2
3
import torch
import torch.nn.functional as F
from torchvision import datasets, transforms
liuzhe-lz's avatar
liuzhe-lz committed
4
from nni.algorithms.compression.pytorch.quantization import QAT_Quantizer
Cjkkkk's avatar
Cjkkkk committed
5

6
7
8
import sys
sys.path.append('../models')
from mnist.naive import NaiveModel
Cjkkkk's avatar
Cjkkkk committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

def train(model, quantizer, device, train_loader, optimizer):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, 100 * correct / len(test_loader.dataset)))

def main():
    torch.manual_seed(0)
Cjkkkk's avatar
Cjkkkk committed
40
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Cjkkkk's avatar
Cjkkkk committed
41
42
43
44
45
46
47
48
49

    trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=True, download=True, transform=trans),
        batch_size=64, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=False, transform=trans),
        batch_size=1000, shuffle=True)

50
    model = NaiveModel()
Cjkkkk's avatar
Cjkkkk committed
51
52
53
54
55
56
57
58
59
60
61
62
    '''you can change this to DoReFaQuantizer to implement it
    DoReFaQuantizer(configure_list).compress(model)
    '''
    configure_list = [{
        'quant_types': ['weight'],
        'quant_bits': {
            'weight': 8,
        }, # you can just use `int` here because all `quan_types` share same bits length, see config for `ReLu6` below.
        'op_types':['Conv2d', 'Linear']
    }, {
        'quant_types': ['output'],
        'quant_bits': 8,
Cjkkkk's avatar
Cjkkkk committed
63
        'quant_start_step': 1000,
Cjkkkk's avatar
Cjkkkk committed
64
65
        'op_types':['ReLU6']
    }]
Cjkkkk's avatar
Cjkkkk committed
66
67
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
    quantizer = QAT_Quantizer(model, configure_list, optimizer)
Cjkkkk's avatar
Cjkkkk committed
68
69
    quantizer.compress()

Cjkkkk's avatar
Cjkkkk committed
70
    model.to(device)
Cjkkkk's avatar
Cjkkkk committed
71
    for epoch in range(40):
Cjkkkk's avatar
Cjkkkk committed
72
73
74
75
        print('# Epoch {} #'.format(epoch))
        train(model, quantizer, device, train_loader, optimizer)
        test(model, device, test_loader)

76
77
78
79
80
81
82
83
    model_path = "mnist_model.pth"
    calibration_path = "mnist_calibration.pth"
    onnx_path = "mnist_model.onnx"
    input_shape = (1, 1, 28, 28)
    device = torch.device("cuda")

    calibration_config = quantizer.export_model(model_path, calibration_path, onnx_path, input_shape, device)
    print("Generated calibration config is: ", calibration_config)
Cjkkkk's avatar
Cjkkkk committed
84
85
86

if __name__ == '__main__':
    main()