import torch import torch.nn.functional as F from torchvision import datasets, transforms from nni.algorithms.compression.pytorch.quantization import QAT_Quantizer import sys sys.path.append('../models') from mnist.naive import NaiveModel def train(model, quantizer, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Loss: {} Accuracy: {}%)\n'.format( test_loss, 100 * correct / len(test_loader.dataset))) def main(): torch.manual_seed(0) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, download=True, transform=trans), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=False, transform=trans), batch_size=1000, shuffle=True) model = NaiveModel() '''you can change this to DoReFaQuantizer to implement it DoReFaQuantizer(configure_list).compress(model) ''' configure_list = [{ 'quant_types': ['weight'], 'quant_bits': { 'weight': 8, }, # you can just use `int` here because all `quan_types` share same bits length, see config for `ReLu6` below. 'op_types':['Conv2d', 'Linear'] }, { 'quant_types': ['output'], 'quant_bits': 8, 'quant_start_step': 1000, 'op_types':['ReLU6'] }] optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5) quantizer = QAT_Quantizer(model, configure_list, optimizer) quantizer.compress() model.to(device) for epoch in range(40): print('# Epoch {} #'.format(epoch)) train(model, quantizer, device, train_loader, optimizer) test(model, device, test_loader) model_path = "mnist_model.pth" calibration_path = "mnist_calibration.pth" onnx_path = "mnist_model.onnx" input_shape = (1, 1, 28, 28) device = torch.device("cuda") calibration_config = quantizer.export_model(model_path, calibration_path, onnx_path, input_shape, device) print("Generated calibration config is: ", calibration_config) if __name__ == '__main__': main()