test_pruning_wrapper.py 1.63 KB
Newer Older
1
2
3
4
5
6
7
8
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import unittest

import torch
import torch.nn.functional as F

J-shang's avatar
J-shang committed
9
from nni.compression.pytorch.pruning import L1NormPruner
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

class TorchModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 5, 5, 1)
        self.bn1 = torch.nn.BatchNorm2d(5)
        self.conv2 = torch.nn.Conv2d(5, 10, 5, 1)
        self.bn2 = torch.nn.BatchNorm2d(10)
        self.fc1 = torch.nn.Linear(4 * 4 * 10, 100)
        self.fc2 = torch.nn.Linear(100, 10)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4 * 4 * 10)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


class PrunerTestCase(unittest.TestCase):
    def test_pruner_module_wrapper(self):
        model = TorchModel()
        conv1_weight = model.conv1.weight.data.clone()
        conv2_weight = model.conv2.weight.data.clone()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = L1NormPruner(model, config_list)
        _, masks = pruner.compress()
        model(torch.rand(10, 1, 28, 28))
        assert torch.equal(model.conv1.weight.data, conv1_weight)
        assert torch.equal(model.conv2.weight.data, conv2_weight)
        assert torch.equal(model.conv1.module.weight.data, conv1_weight * masks['conv1']['weight'])
        assert torch.equal(model.conv2.module.weight.data, conv2_weight * masks['conv2']['weight'])

if __name__ == '__main__':
    unittest.main()