index.rst 8 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
NNI Documentation
=================

.. toctree::
   :maxdepth: 2
   :caption: Get Started
   :hidden:

   installation
   quickstart

.. toctree::
   :maxdepth: 2
   :caption: User Guide
   :hidden:

liuzhe-lz's avatar
liuzhe-lz committed
17
   hpo/toctree
18
   nas/toctree
19
   Model Compression <compression/toctree>
20
21
   feature_engineering/toctree
   experiment/toctree
Yuge Zhang's avatar
Yuge Zhang committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.. toctree::
   :maxdepth: 2
   :caption: References
   :hidden:

   Python API <reference/python_api>
   reference/experiment_config
   reference/nnictl

.. toctree::
   :maxdepth: 2
   :caption: Misc
   :hidden:

   examples
   sharings/community_sharings
   notes/research_publications
   notes/build_from_source
   notes/contributing
   release
Yuge Zhang's avatar
Yuge Zhang committed
43

44
45
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate**:

Yuge Zhang's avatar
Yuge Zhang committed
46
* :doc:`Hyperparameter Optimization </hpo/overview>`
47
* :doc:`Neural Architecture Search </nas/overview>`
48
* :doc:`Model Compression </compression/overview>`
Yuge Zhang's avatar
Yuge Zhang committed
49
* :doc:`Feature Engineering </feature_engineering/overview>`
50

Yuge Zhang's avatar
Yuge Zhang committed
51
52
Get Started
-----------
53
54
55
56
57
58
59
60
61

To install the current release:

.. code-block:: bash

   $ pip install nni

See the :doc:`installation guide </installation>` if you need additional help on installation.

Yuge Zhang's avatar
Yuge Zhang committed
62
63
Try your first NNI experiment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
64

Yuge Zhang's avatar
Yuge Zhang committed
65
.. code-block:: shell
66

Yuge Zhang's avatar
Yuge Zhang committed
67
   $ nnictl hello
68

69
.. note:: You need to have `PyTorch <https://pytorch.org/>`_ (as well as `torchvision <https://pytorch.org/vision/stable/index.html>`_) installed to run this experiment.
70

Yuge Zhang's avatar
Yuge Zhang committed
71
To start your journey now, please follow the :doc:`absolute quickstart of NNI <quickstart>`!
72

Yuge Zhang's avatar
Yuge Zhang committed
73
74
Why choose NNI?
---------------
75

Yuge Zhang's avatar
Yuge Zhang committed
76
77
NNI makes AutoML techniques plug-and-play
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
78

79
80
81
82
83
.. raw:: html

   <div class="codesnippet-card-container">

.. codesnippetcard::
84
   :icon: ../img/thumbnails/hpo-small.svg
liuzhe-lz's avatar
liuzhe-lz committed
85
   :title: Hyperparameter Tuning
liuzhe-lz's avatar
liuzhe-lz committed
86
   :link: tutorials/hpo_quickstart_pytorch/main
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

   .. code-block::

      params = nni.get_next_parameter()

      class Net(nn.Module):
          ...

      model = Net()
      optimizer = optim.SGD(model.parameters(),
                            params['lr'],
                            params['momentum'])

      for epoch in range(10):
          train(...)

      accuracy = test(model)
      nni.report_final_result(accuracy)

.. codesnippetcard::
107
   :icon: ../img/thumbnails/pruning-small.svg
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
   :title: Model Pruning
   :link: tutorials/pruning_quick_start_mnist

   .. code-block::

      # define a config_list
      config = [{
          'sparsity': 0.8,
          'op_types': ['Conv2d']
      }]

      # generate masks for simulated pruning
      wrapped_model, masks = \
          L1NormPruner(model, config). \
          compress()

124
      # apply the masks for real speedup
125
126
127
128
      ModelSpeedup(unwrapped_model, input, masks). \
          speedup_model()

.. codesnippetcard::
129
   :icon: ../img/thumbnails/quantization-small.svg
130
   :title: Quantization
131
   :link: tutorials/quantization_speedup
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

   .. code-block::

      # define a config_list
      config = [{
          'quant_types': ['input', 'weight'],
          'quant_bits': {'input': 8, 'weight': 8},
          'op_types': ['Conv2d']
      }]

      # in case quantizer needs a extra training
      quantizer = QAT_Quantizer(model, config)
      quantizer.compress()
      # Training...

      # export calibration config and
148
      # generate TensorRT engine for real speedup
149
150
151
152
153
154
155
      calibration_config = quantizer.export_model(
          model_path, calibration_path)
      engine = ModelSpeedupTensorRT(
          model, input_shape, config=calib_config)
      engine.compress()

.. codesnippetcard::
156
   :icon: ../img/thumbnails/multi-trial-nas-small.svg
157
158
159
   :title: Neural Architecture Search
   :link: tutorials/hello_nas

160
   .. code-block:: python
161
162

      # define model space
163
164
165
166
167
168
      class Model(nn.Module):
          self.conv2 = nn.LayerChoice([
              nn.Conv2d(32, 64, 3, 1),
              DepthwiseSeparableConv(32, 64)
          ])
      model_space = Model()
169
170
171
172
173
174
175
176
177
178
      # search strategy + evaluator
      strategy = RegularizedEvolution()
      evaluator = FunctionalEvaluator(
          train_eval_fn)

      # run experiment
      RetiariiExperiment(model_space,
          evaluator, strategy).run()

.. codesnippetcard::
179
   :icon: ../img/thumbnails/one-shot-nas-small.svg
180
   :title: One-shot NAS
181
   :link: nas/exploration_strategy
182
183
184
185
186
187
188
189
190
191
192
193
194
195

   .. code-block::

      # define model space
      space = AnySearchSpace()

      # get a darts trainer
      trainer = DartsTrainer(space, loss, metrics)
      trainer.fit()

      # get final searched architecture
      arch = trainer.export()

.. codesnippetcard::
196
   :icon: ../img/thumbnails/feature-engineering-small.svg
197
   :title: Feature Engineering
J-shang's avatar
J-shang committed
198
   :link: feature_engineering/overview
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

   .. code-block::

      selector = GBDTSelector()
      selector.fit(
          X_train, y_train,
          lgb_params=lgb_params,
          eval_ratio=eval_ratio,
          early_stopping_rounds=10,
          importance_type='gain',
          num_boost_round=1000)

      # get selected features
      features = selector.get_selected_features()

.. End of code snippet card

.. raw:: html
Yuge Zhang's avatar
Yuge Zhang committed
217

218
   </div>
Yuge Zhang's avatar
Yuge Zhang committed
219

Yuge Zhang's avatar
Yuge Zhang committed
220
221
NNI eases the effort to scale and manage AutoML experiments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
222
223

.. codesnippetcard::
224
   :icon: ../img/thumbnails/training-service-small.svg
225
   :title: Training Service
226
   :link: experiment/training_service/overview
227
228
229
230
231
232
233
234
   :seemore: See more here.

   An AutoML experiment requires many trials to explore feasible and potentially good-performing models.
   **Training service** aims to make the tuning process easily scalable in a distributed platforms.
   It provides a unified user experience for diverse computation resources (e.g., local machine, remote servers, AKS).
   Currently, NNI supports **more than 9** kinds of training services.

.. codesnippetcard::
235
   :icon: ../img/thumbnails/web-portal-small.svg
236
   :title: Web Portal
237
   :link: experiment/web_portal/web_portal
238
239
240
241
242
243
244
245
   :seemore: See more here.

   Web portal visualizes the tuning process, exposing the ability to inspect, monitor and control the experiment.

   .. image:: ../static/img/webui.gif
      :width: 100%

.. codesnippetcard::
246
   :icon: ../img/thumbnails/experiment-management-small.svg
247
   :title: Experiment Management
248
   :link: experiment/experiment_management
249
250
251
252
253
254
255
   :seemore: See more here.

   The DNN model tuning often requires more than one experiment.
   Users might try different tuning algorithms, fine-tune their search space, or switch to another training service.
   **Experiment management** provides the power to aggregate and compare tuning results from multiple experiments,
   so that the tuning workflow becomes clean and organized.

Yuge Zhang's avatar
Yuge Zhang committed
256
257
Get Support and Contribute Back
-------------------------------
258
259
260
261

NNI is maintained on the `NNI GitHub repository <https://github.com/microsoft/nni>`_. We collect feedbacks and new proposals/ideas on GitHub. You can:

* Open a `GitHub issue <https://github.com/microsoft/nni/issues>`_ for bugs and feature requests.
262
* Open a `pull request <https://github.com/microsoft/nni/pulls>`_ to contribute code (make sure to read the :doc:`contribution guide <notes/contributing>` before doing this).
263
264
265
266
267
268
269
270
271
272
273
274
275
* Participate in `NNI Discussion <https://github.com/microsoft/nni/discussions>`_ for general questions and new ideas.
* Join the following IM groups.

.. list-table::
   :header-rows: 1
   :widths: auto

   * - Gitter
     - WeChat
   * -
       .. image:: https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png
     -
       .. image:: https://github.com/scarlett2018/nniutil/raw/master/wechat.png
276

Yuge Zhang's avatar
Yuge Zhang committed
277
278
Citing NNI
----------
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

If you use NNI in a scientific publication, please consider citing NNI in your references.

   Microsoft. Neural Network Intelligence (version |release|). https://github.com/microsoft/nni

Bibtex entry (please replace the version with the particular version you are using): ::

   @software{nni2021,
      author = {{Microsoft}},
      month = {1},
      title = {{Neural Network Intelligence}},
      url = {https://github.com/microsoft/nni},
      version = {2.0},
      year = {2021}
   }