model_prune_torch.py 9.8 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
8
9
10
11
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

from models.cifar10.vgg import VGG
import nni
12
13
14
15
16
17
18
19
20
21
from nni.algorithms.compression.pytorch.pruning import (
    LevelPruner,
    SlimPruner,
    FPGMPruner,
    L1FilterPruner,
    L2FilterPruner,
    AGPPruner,
    ActivationMeanRankFilterPruner,
    ActivationAPoZRankFilterPruner
)
chicm-ms's avatar
chicm-ms committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35

prune_config = {
    'level': {
        'dataset_name': 'mnist',
        'model_name': 'naive',
        'pruner_class': LevelPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
        }]
    },
    'agp': {
        'dataset_name': 'mnist',
        'model_name': 'naive',
36
        'pruner_class': AGPPruner,
chicm-ms's avatar
chicm-ms committed
37
        'config_list': [{
chicm-ms's avatar
chicm-ms committed
38
            'initial_sparsity': 0.,
chicm-ms's avatar
chicm-ms committed
39
40
41
42
            'final_sparsity': 0.8,
            'start_epoch': 0,
            'end_epoch': 10,
            'frequency': 1,
43
            'op_types': ['Conv2d']
chicm-ms's avatar
chicm-ms committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        }]
    },
    'slim': {
        'dataset_name': 'cifar10',
        'model_name': 'vgg19',
        'pruner_class': SlimPruner,
        'config_list': [{
            'sparsity': 0.7,
            'op_types': ['BatchNorm2d']
        }]
    },
    'fpgm': {
        'dataset_name': 'mnist',
        'model_name': 'naive',
        'pruner_class': FPGMPruner,
59
        'config_list': [{
chicm-ms's avatar
chicm-ms committed
60
61
62
63
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }]
    },
chicm-ms's avatar
chicm-ms committed
64
    'l1filter': {
chicm-ms's avatar
chicm-ms committed
65
66
67
68
69
        'dataset_name': 'cifar10',
        'model_name': 'vgg16',
        'pruner_class': L1FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
chicm-ms's avatar
chicm-ms committed
70
            'op_types': ['Conv2d'],
chicm-ms's avatar
chicm-ms committed
71
72
73
74
75
76
77
            'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
        }]
    },
    'mean_activation': {
        'dataset_name': 'cifar10',
        'model_name': 'vgg16',
        'pruner_class': ActivationMeanRankFilterPruner,
chicm-ms's avatar
chicm-ms committed
78
        'config_list': [{
chicm-ms's avatar
chicm-ms committed
79
            'sparsity': 0.5,
chicm-ms's avatar
chicm-ms committed
80
            'op_types': ['Conv2d'],
chicm-ms's avatar
chicm-ms committed
81
82
83
84
85
86
87
88
89
            'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
        }]
    },
    'apoz': {
        'dataset_name': 'cifar10',
        'model_name': 'vgg16',
        'pruner_class': ActivationAPoZRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
90
            'op_types': ['Conv2d'],
chicm-ms's avatar
chicm-ms committed
91
92
93
94
95
            'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
        }]
    }
}

96

chicm-ms's avatar
chicm-ms committed
97
98
99
100
101
102
103
104
105
106
107
108
109
def get_data_loaders(dataset_name='mnist', batch_size=128):
    assert dataset_name in ['cifar10', 'mnist']

    if dataset_name == 'cifar10':
        ds_class = datasets.CIFAR10 if dataset_name == 'cifar10' else datasets.MNIST
        MEAN, STD = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
    else:
        ds_class = datasets.MNIST
        MEAN, STD = (0.1307,), (0.3081,)

    train_loader = DataLoader(
        ds_class(
            './data', train=True, download=True,
110
111
            transform=transforms.Compose(
                [transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
chicm-ms's avatar
chicm-ms committed
112
113
114
115
116
117
        ),
        batch_size=batch_size, shuffle=True
    )
    test_loader = DataLoader(
        ds_class(
            './data', train=False, download=True,
118
119
            transform=transforms.Compose(
                [transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
chicm-ms's avatar
chicm-ms committed
120
121
122
123
124
125
        ),
        batch_size=batch_size, shuffle=False
    )

    return train_loader, test_loader

126

chicm-ms's avatar
chicm-ms committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
class NaiveModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.bn1 = nn.BatchNorm2d(self.conv1.out_channels)
        self.bn2 = nn.BatchNorm2d(self.conv2.out_channels)
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.max_pool2d(x, 2, 2)
142
        x = x.view(x.size(0), -1)
chicm-ms's avatar
chicm-ms committed
143
144
145
146
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

147

chicm-ms's avatar
chicm-ms committed
148
149
150
151
152
153
154
155
156
157
def create_model(model_name='naive'):
    assert model_name in ['naive', 'vgg16', 'vgg19']

    if model_name == 'naive':
        return NaiveModel()
    elif model_name == 'vgg16':
        return VGG(16)
    else:
        return VGG(19)

158
159

def create_pruner(model, pruner_name, optimizer=None, dependency_aware=False, dummy_input=None):
chicm-ms's avatar
chicm-ms committed
160
161
    pruner_class = prune_config[pruner_name]['pruner_class']
    config_list = prune_config[pruner_name]['config_list']
162
163
164
165
166
167
168
169
    kw_args = {}
    if dependency_aware:
        print('Enable the dependency_aware mode')
        # note that, not all pruners support the dependency_aware mode
        kw_args['dependency_aware'] = True
        kw_args['dummy_input'] = dummy_input
    pruner = pruner_class(model, config_list, optimizer, **kw_args)
    return pruner
chicm-ms's avatar
chicm-ms committed
170
171
172
173
174
175
176
177
178
179
180

def train(model, device, train_loader, optimizer):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
181
182
183
            print('{:2.0f}%  Loss {}'.format(
                100 * batch_idx / len(train_loader), loss.item()))

chicm-ms's avatar
chicm-ms committed
184
185
186
187
188
189
190
191
192

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
193
194
            test_loss += F.cross_entropy(output,
                                         target, reduction='sum').item()
chicm-ms's avatar
chicm-ms committed
195
196
197
198
199
200
201
202
203
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, acc))
    return acc

204

chicm-ms's avatar
chicm-ms committed
205
def main(args):
206
207
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
chicm-ms's avatar
chicm-ms committed
208
    os.makedirs(args.checkpoints_dir, exist_ok=True)
chicm-ms's avatar
chicm-ms committed
209
210
211
212

    model_name = prune_config[args.pruner_name]['model_name']
    dataset_name = prune_config[args.pruner_name]['dataset_name']
    train_loader, test_loader = get_data_loaders(dataset_name, args.batch_size)
213
214
    dummy_input, _ = next(iter(train_loader))
    dummy_input = dummy_input.to(device)
chicm-ms's avatar
chicm-ms committed
215
216
217
218
219
220
    model = create_model(model_name).cuda()
    if args.resume_from is not None and os.path.exists(args.resume_from):
        print('loading checkpoint {} ...'.format(args.resume_from))
        model.load_state_dict(torch.load(args.resume_from))
        test(model, device, test_loader)
    else:
221
222
        optimizer = torch.optim.SGD(
            model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
chicm-ms's avatar
chicm-ms committed
223
224
225
226
227
228
229
230
231
232
233
234
235
        if args.multi_gpu and torch.cuda.device_count():
            model = nn.DataParallel(model)

        print('start training')
        pretrain_model_path = os.path.join(
            args.checkpoints_dir, 'pretrain_{}_{}_{}.pth'.format(model_name, dataset_name, args.pruner_name))
        for epoch in range(args.pretrain_epochs):
            train(model, device, train_loader, optimizer)
            test(model, device, test_loader)
        torch.save(model.state_dict(), pretrain_model_path)

    print('start model pruning...')

236
237
238
239
    model_path = os.path.join(args.checkpoints_dir, 'pruned_{}_{}_{}.pth'.format(
        model_name, dataset_name, args.pruner_name))
    mask_path = os.path.join(args.checkpoints_dir, 'mask_{}_{}_{}.pth'.format(
        model_name, dataset_name, args.pruner_name))
chicm-ms's avatar
chicm-ms committed
240
241
242
243
244

    # pruner needs to be initialized from a model not wrapped by DataParallel
    if isinstance(model, nn.DataParallel):
        model = model.module

245
246
    optimizer_finetune = torch.optim.SGD(
        model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
chicm-ms's avatar
chicm-ms committed
247
248
    best_top1 = 0

249
250
    pruner = create_pruner(model, args.pruner_name,
                           optimizer_finetune, args.dependency_aware, dummy_input)
chicm-ms's avatar
chicm-ms committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    model = pruner.compress()

    if args.multi_gpu and torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)

    for epoch in range(args.prune_epochs):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer_finetune)
        top1 = test(model, device, test_loader)
        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path=model_path, mask_path=mask_path)

267

chicm-ms's avatar
chicm-ms committed
268
269
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
270
271
    parser.add_argument("--pruner_name", type=str,
                        default="level", help="pruner name")
chicm-ms's avatar
chicm-ms committed
272
    parser.add_argument("--batch_size", type=int, default=256)
273
274
275
276
277
278
279
280
281
282
283
284
    parser.add_argument("--pretrain_epochs", type=int,
                        default=10, help="training epochs before model pruning")
    parser.add_argument("--prune_epochs", type=int, default=10,
                        help="training epochs for model pruning")
    parser.add_argument("--checkpoints_dir", type=str,
                        default="./checkpoints", help="checkpoints directory")
    parser.add_argument("--resume_from", type=str,
                        default=None, help="pretrained model weights")
    parser.add_argument("--multi_gpu", action="store_true",
                        help="Use multiple GPUs for training")
    parser.add_argument("--dependency_aware", action="store_true", default=False,
                        help="If enable the dependency_aware mode for the pruner")
chicm-ms's avatar
chicm-ms committed
285
286
    args = parser.parse_args()
    main(args)