model_prune_torch.py 8.84 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

from models.cifar10.vgg import VGG
import nni
from nni.compression.torch import LevelPruner, SlimPruner, FPGMPruner, L1FilterPruner, \
    L2FilterPruner, AGP_Pruner, ActivationMeanRankFilterPruner, ActivationAPoZRankFilterPruner

prune_config = {
    'level': {
        'dataset_name': 'mnist',
        'model_name': 'naive',
        'pruner_class': LevelPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
        }]
    },
    'agp': {
        'dataset_name': 'mnist',
        'model_name': 'naive',
        'pruner_class': AGP_Pruner,
        'config_list': [{
            'initial_sparsity': 0,
            'final_sparsity': 0.8,
            'start_epoch': 0,
            'end_epoch': 10,
            'frequency': 1,
            'op_types': ['default']
        }]
    },
    'slim': {
        'dataset_name': 'cifar10',
        'model_name': 'vgg19',
        'pruner_class': SlimPruner,
        'config_list': [{
            'sparsity': 0.7,
            'op_types': ['BatchNorm2d']
        }]
    },
    'fpgm': {
        'dataset_name': 'mnist',
        'model_name': 'naive',
        'pruner_class': FPGMPruner,
        'config_list':[{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }]
    },
    'l1': {
        'dataset_name': 'cifar10',
        'model_name': 'vgg16',
        'pruner_class': L1FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
            'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
        }]
    },
    'mean_activation': {
        'dataset_name': 'cifar10',
        'model_name': 'vgg16',
        'pruner_class': ActivationMeanRankFilterPruner,
chicm-ms's avatar
chicm-ms committed
70
        'config_list': [{
chicm-ms's avatar
chicm-ms committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
            'sparsity': 0.5,
            'op_types': ['default'],
            'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
        }]
    },
    'apoz': {
        'dataset_name': 'cifar10',
        'model_name': 'vgg16',
        'pruner_class': ActivationAPoZRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
            'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
        }]
    }
}

def get_data_loaders(dataset_name='mnist', batch_size=128):
    assert dataset_name in ['cifar10', 'mnist']

    if dataset_name == 'cifar10':
        ds_class = datasets.CIFAR10 if dataset_name == 'cifar10' else datasets.MNIST
        MEAN, STD = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
    else:
        ds_class = datasets.MNIST
        MEAN, STD = (0.1307,), (0.3081,)

    train_loader = DataLoader(
        ds_class(
            './data', train=True, download=True,
            transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
        ),
        batch_size=batch_size, shuffle=True
    )
    test_loader = DataLoader(
        ds_class(
            './data', train=False, download=True,
            transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
        ),
        batch_size=batch_size, shuffle=False
    )

    return train_loader, test_loader

class NaiveModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.bn1 = nn.BatchNorm2d(self.conv1.out_channels)
        self.bn2 = nn.BatchNorm2d(self.conv2.out_channels)
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.max_pool2d(x, 2, 2)
130
        x = x.view(x.size(0), -1)
chicm-ms's avatar
chicm-ms committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

def create_model(model_name='naive'):
    assert model_name in ['naive', 'vgg16', 'vgg19']

    if model_name == 'naive':
        return NaiveModel()
    elif model_name == 'vgg16':
        return VGG(16)
    else:
        return VGG(19)

chicm-ms's avatar
chicm-ms committed
145
def create_pruner(model, pruner_name, optimizer=None):
chicm-ms's avatar
chicm-ms committed
146
147
    pruner_class = prune_config[pruner_name]['pruner_class']
    config_list = prune_config[pruner_name]['config_list']
chicm-ms's avatar
chicm-ms committed
148
    return pruner_class(model, config_list, optimizer)
chicm-ms's avatar
chicm-ms committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

def train(model, device, train_loader, optimizer):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, acc))
    return acc

def main(args):
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
chicm-ms's avatar
chicm-ms committed
182
    os.makedirs(args.checkpoints_dir, exist_ok=True)
chicm-ms's avatar
chicm-ms committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

    model_name = prune_config[args.pruner_name]['model_name']
    dataset_name = prune_config[args.pruner_name]['dataset_name']
    train_loader, test_loader = get_data_loaders(dataset_name, args.batch_size)
    model = create_model(model_name).cuda()
    if args.resume_from is not None and os.path.exists(args.resume_from):
        print('loading checkpoint {} ...'.format(args.resume_from))
        model.load_state_dict(torch.load(args.resume_from))
        test(model, device, test_loader)
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
        if args.multi_gpu and torch.cuda.device_count():
            model = nn.DataParallel(model)

        print('start training')
        pretrain_model_path = os.path.join(
            args.checkpoints_dir, 'pretrain_{}_{}_{}.pth'.format(model_name, dataset_name, args.pruner_name))
        for epoch in range(args.pretrain_epochs):
            train(model, device, train_loader, optimizer)
            test(model, device, test_loader)
        torch.save(model.state_dict(), pretrain_model_path)

    print('start model pruning...')

    model_path = os.path.join(args.checkpoints_dir, 'pruned_{}_{}_{}.pth'.format(model_name, dataset_name, args.pruner_name))
    mask_path = os.path.join(args.checkpoints_dir, 'mask_{}_{}_{}.pth'.format(model_name, dataset_name, args.pruner_name))

    # pruner needs to be initialized from a model not wrapped by DataParallel
    if isinstance(model, nn.DataParallel):
        model = model.module

    optimizer_finetune = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
    best_top1 = 0

Cjkkkk's avatar
Cjkkkk committed
217
    pruner = create_pruner(model, args.pruner_name, optimizer_finetune)
chicm-ms's avatar
chicm-ms committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    model = pruner.compress()

    if args.multi_gpu and torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)

    for epoch in range(args.prune_epochs):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer_finetune)
        top1 = test(model, device, test_loader)
        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path=model_path, mask_path=mask_path)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--pruner_name", type=str, default="level", help="pruner name")
    parser.add_argument("--batch_size", type=int, default=256)
    parser.add_argument("--pretrain_epochs", type=int, default=10, help="training epochs before model pruning")
    parser.add_argument("--prune_epochs", type=int, default=10, help="training epochs for model pruning")
    parser.add_argument("--checkpoints_dir", type=str, default="./checkpoints", help="checkpoints directory")
    parser.add_argument("--resume_from", type=str, default=None, help="pretrained model weights")
    parser.add_argument("--multi_gpu", action="store_true", help="Use multiple GPUs for training")

    args = parser.parse_args()
    main(args)