"test/vscode:/vscode.git/clone" did not exist on "55f8e43522e5ebb4c85e1a3bc52fda0151562701"
README.md 19.7 KB
Newer Older
1
<p align="center">
2
<img src="docs/img/nni_logo.png" width="300"/>
3
4
5
</p>

-----------
6

7
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
Yuge Zhang's avatar
Yuge Zhang committed
8
[![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration-test-local?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=17&branchName=master)
Gems Guo's avatar
Gems Guo committed
9
10
11
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
The Gitter Badger's avatar
The Gitter Badger committed
12
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases) [![Join the chat at https://gitter.im/Microsoft/nni](https://badges.gitter.im/Microsoft/nni.svg)](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Yan Ni's avatar
Yan Ni committed
13
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=latest)](https://nni.readthedocs.io/en/latest/?badge=latest)
Microsoft Open Source's avatar
Microsoft Open Source committed
14

15
[简体中文](README_zh_CN.md)
Chi Song's avatar
Chi Song committed
16

17
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate** <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering</a>, <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>, <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a> and <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>.
18

19
20
21
22
23
24
25
26
The tool manages automated machine learning (AutoML) experiments, **dispatches and runs** experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in **different training environments** like <a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a>, <a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a>, <a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a>, <a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a>, <a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a> and other cloud options.

## **Who should consider using NNI**

* Those who want to **try different AutoML algorithms** in their training code/model.
* Those who want to run AutoML trial jobs **in different environments** to speed up search.
* Researchers and data scientists who want to easily **implement and experiement new AutoML algorithms**, may it be: hyperparameter tuning algorithm, neural architect search algorithm or model compression algorithm.
* ML Platform owners who want to **support AutoML in their platform**.
27

28
### **NNI v1.3 has been released! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
29

30
31
32
33
34
## **NNI capabilities in a glance**
NNI provides CommandLine Tool as well as an user friendly WebUI to manage training experiements. With the extensible API, you can customize your own AutoML algorithms and training services. To make it easy for new users, NNI also provides a set of build-in stat-of-the-art AutoML algorithms and out of box support for popular training platforms. 

Within the following table, we summarized the current NNI capabilities, we are gradually adding new capabilities and we'd love to have your contribution.

QuanluZhang's avatar
QuanluZhang committed
35
<p align="center">
Lijiao's avatar
Lijiao committed
36
  <a href="#nni-has-been-released"><img src="docs/img/overview.svg" /></a>
QuanluZhang's avatar
QuanluZhang committed
37
</p>
38

QuanluZhang's avatar
QuanluZhang committed
39
40
<table>
  <tbody>
41
    <tr align="center" valign="bottom">
42
43
    <td>
      </td>
QuanluZhang's avatar
QuanluZhang committed
44
      <td>
45
        <b>Frameworks & Libraries</b>
46
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
47
48
      </td>
      <td>
49
        <b>Algorithms</b>
50
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
51
52
      </td>
      <td>
Gems's avatar
Gems committed
53
        <b>Training Services</b>
54
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
55
56
      </td>
    </tr>
57
    </tr>
QuanluZhang's avatar
QuanluZhang committed
58
    <tr valign="top">
59
60
61
    <td align="center" valign="middle">
    <b>Built-in</b>
      </td>
QuanluZhang's avatar
QuanluZhang committed
62
      <td>
63
      <ul><li><b>Supported Frameworks</b></li>
64
65
66
        <ul>
          <li>PyTorch</li>
          <li>Keras</li>
67
          <li>TensorFlow</li>
68
69
          <li>MXNet</li>
          <li>Caffe2</li>
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
          <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
        </ul>
        </ul>
      <ul>
        <li><b>Supported Libraries</b></li>
          <ul>
           <li>Scikit-learn</li>
           <li>XGBoost</li>
           <li>LightGBM</li>
           <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
      </ul>
        <ul>
        <li><b>Examples</b></li>
         <ul>
Guoxin's avatar
Guoxin committed
85
           <li><a href="examples/trials/mnist-pytorch">MNIST-pytorch</li></a>
86
           <li><a href="examples/trials/mnist-tfv1">MNIST-tensorflow</li></a>
87
88
89
90
91
92
           <li><a href="examples/trials/mnist-keras">MNIST-keras</li></a>
           <li><a href="docs/en_US/TrialExample/GbdtExample.md">Auto-gbdt</a></li>
           <li><a href="docs/en_US/TrialExample/Cifar10Examples.md">Cifar10-pytorch</li></a>
           <li><a href="docs/en_US/TrialExample/SklearnExamples.md">Scikit-learn</a></li>
              <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
QuanluZhang's avatar
QuanluZhang committed
93
94
        </ul>
      </td>
95
      <td align="left" >
96
        <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a>
QuanluZhang's avatar
QuanluZhang committed
97
        <ul>
98
          <b>Exhaustive search</b>
99
          <ul>
100
101
102
103
104
105
106
107
108
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Random">Random Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GridSearch">Grid Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Batch">Batch</a></li>
            </ul>
          <b>Heuristic search</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Evolution">Naïve Evolution</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Anneal">Anneal</a></li>  
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Hyperband">Hyperband</a></li>
109
          </ul>
110
111
112
113
114
115
116
117
118
119
120
121
122
123
          <b>Bayesian optimization</b>
            <ul>
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#BOHB">BOHB</a></li>  
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#TPE">TPE</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#SMAC">SMAC</a></li> 
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#MetisTuner">Metis Tuner</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GPTuner">GP Tuner</a> </li>
            </ul>  
          <b>RL Based</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#PPOTuner">PPO Tuner</a> </li>
          </ul>
        </ul>
          <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>
124
125
126
127
128
129
130
          <ul>                        
            <ul>
              <li><a href="docs/en_US/NAS/Overview.md#enas">ENAS</a></li>
              <li><a href="docs/en_US/NAS/Overview.md#darts">DARTS</a></li>
              <li><a href="docs/en_US/NAS/Overview.md#p-darts">P-DARTS</a></li>
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#NetworkMorphism">Network Morphism</a> </li>
            </ul>    
131
          </ul>
132
          <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>
133
          <ul>
134
135
136
137
138
139
140
141
142
143
144
            <b>Pruning</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Pruner.md#agp-pruner">AGP Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#slim-pruner">Slim Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#fpgm-pruner">FPGM Pruner</a></li>
            </ul>
            <b>Quantization</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Quantizer.md#qat-quantizer">QAT Quantizer</a></li>
              <li><a href="docs/en_US/Compressor/Quantizer.md#dorefa-quantizer">DoReFa Quantizer</a></li>
            </ul>
145
146
147
148
149
150
          </ul>
          <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering (Beta)</a>
          <ul>
          <li><a href="docs/en_US/FeatureEngineering/GradientFeatureSelector.md">GradientFeatureSelector</a></li>
          <li><a href="docs/en_US/FeatureEngineering/GBDTSelector.md">GBDTSelector</a></li>
          </ul>
151
152
153
154
155
          <a href="docs/en_US/Assessor/BuiltinAssessor.md">Early Stop Algorithms</a>
          <ul>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Medianstop">Median Stop</a></li>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Curvefitting">Curve Fitting</a></li>   
          </ul>
QuanluZhang's avatar
QuanluZhang committed
156
157
158
      </td>
      <td>
      <ul>
159
160
161
162
163
164
165
        <li><a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a></li>
        <li><a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a></li>
        <li><b>Kubernetes based services</b></li>
            <ul><li><a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a></li>
            <li><a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a></li>
            <li><a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a></li>
            </ul>
QuanluZhang's avatar
QuanluZhang committed
166
167
      </ul>
      </td>
168
    </tr> 
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
      <tr align="center" valign="bottom">
      </td>
      </tr>
      <tr valign="top">
       <td valign="middle">
    <b>References</b>
      </td>
     <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/sdk_reference.rst">Python API</a></li>
        <li><a href="docs/en_US/Tutorial/AnnotationSpec.md">NNI Annotation</a></li>
         <li><a href="docs/en_US/Tutorial/Installation.md">Supported OS</a></li>
      </ul>
      </td>
       <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/Tuner/CustomizeTuner.md">CustomizeTuner</a></li>
        <li><a href="docs/en_US/Assessor/CustomizeAssessor.md">CustomizeAssessor</a></li>
      </ul>
      </td>
        <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/TrainingService/SupportTrainingService.md">Support TrainingService</li>
        <li><a href="docs/en_US/TrainingService/HowToImplementTrainingService.md">Implement TrainingService</a></li>
      </ul>
      </td>     
    </tr> 
QuanluZhang's avatar
QuanluZhang committed
196
197
  </tbody>
</table>
198

Scarlett Li's avatar
Scarlett Li committed
199
## **Install & Verify**
Chi Song's avatar
Chi Song committed
200

201
**Install through pip**
Chi Song's avatar
Chi Song committed
202

203
* We support Linux, MacOS and Windows (local, remote and pai mode) in current stage, Ubuntu 16.04 or higher, MacOS 10.14.1 along with Windows 10.1809 are tested and supported. Simply run the following `pip install` in an environment that has `python >= 3.5`.
Zejun Lin's avatar
Zejun Lin committed
204

205
Linux and MacOS
Chi Song's avatar
Chi Song committed
206

Zejun Lin's avatar
Zejun Lin committed
207
```bash
Chi Song's avatar
Chi Song committed
208
python3 -m pip install --upgrade nni
209
```
Chi Song's avatar
Chi Song committed
210

211
Windows
Chi Song's avatar
Chi Song committed
212

213
```bash
Chi Song's avatar
Chi Song committed
214
python -m pip install --upgrade nni
215
```
Chi Song's avatar
Chi Song committed
216

Zejun Lin's avatar
Zejun Lin committed
217
218
219
Note:

* `--user` can be added if you want to install NNI in your home directory, which does not require any special privileges.
220
* Currently NNI on Windows support local, remote and pai mode. Anaconda or Miniconda is highly recommended to install NNI on Windows.
221
* If there is any error like `Segmentation fault`, please refer to [FAQ](docs/en_US/Tutorial/FAQ.md)
Gems Guo's avatar
Gems Guo committed
222
223

**Install through source code**
Chi Song's avatar
Chi Song committed
224

225
* We support Linux (Ubuntu 16.04 or higher), MacOS (10.14.1) and Windows (10.1809) in our current stage.
226
227

Linux and MacOS
Chi Song's avatar
Chi Song committed
228

Gems Guo's avatar
Gems Guo committed
229
* Run the following commands in an environment that has `python >= 3.5`, `git` and `wget`.
Chi Song's avatar
Chi Song committed
230
231

```bash
232
    git clone -b v1.3 https://github.com/Microsoft/nni.git
Chi Song's avatar
Chi Song committed
233
234
    cd nni
    source install.sh
235
```
Chi Song's avatar
Chi Song committed
236

237
Windows
Chi Song's avatar
Chi Song committed
238
239
240

* Run the following commands in an environment that has `python >=3.5`, `git` and `PowerShell`

241
```bash
242
  git clone -b v1.3 https://github.com/Microsoft/nni.git
243
  cd nni
244
  powershell -ExecutionPolicy Bypass -file install.ps1
245
```
246

247
For the system requirements of NNI, please refer to [Install NNI](docs/en_US/Tutorial/Installation.md)
Chi Song's avatar
Chi Song committed
248

249
For NNI on Windows, please refer to [NNI on Windows](docs/en_US/Tutorial/NniOnWindows.md)
250

Chi Song's avatar
Chi Song committed
251
252
**Verify install**

Yuge Zhang's avatar
Yuge Zhang committed
253
The following example is an experiment built on TensorFlow. Make sure you have **TensorFlow 1.x installed** before running it. Note that **currently Tensorflow 2.0 is NOT supported**.
Chi Song's avatar
Chi Song committed
254
255
256
257

* Download the examples via clone the source code.

```bash
258
    git clone -b v1.3 https://github.com/Microsoft/nni.git
Gems Guo's avatar
Gems Guo committed
259
```
Chi Song's avatar
Chi Song committed
260

261
Linux and MacOS
Chi Song's avatar
Chi Song committed
262
263
264

* Run the MNIST example.

265
```bash
266
    nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
267
```
Chi Song's avatar
Chi Song committed
268

269
Windows
Chi Song's avatar
Chi Song committed
270
271
272

* Run the MNIST example.

273
```bash
274
    nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml
275
```
Chi Song's avatar
Chi Song committed
276

277
* Wait for the message `INFO: Successfully started experiment!` in the command line. This message indicates that your experiment has been successfully started. You can explore the experiment using the `Web UI url`.
278

Chi Song's avatar
Chi Song committed
279
```text
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
         commands                       description
1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
SparkSnail's avatar
SparkSnail committed
296
297
298
299
300
301
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
302
-----------------------------------------------------------------------
Scarlett Li's avatar
Scarlett Li committed
303
```
Scarlett Li's avatar
Scarlett Li committed
304

305
* Open the `Web UI url` in your browser, you can view detail information of the experiment and all the submitted trial jobs as shown below. [Here](docs/en_US/Tutorial/WebUI.md) are more Web UI pages.
306
307
308
309
310
311

<table style="border: none">
    <th><img src="./docs/img/webui_overview_page.png" alt="drawing" width="395"/></th>
    <th><img src="./docs/img/webui_trialdetail_page.png" alt="drawing" width="410"/></th>
</table>

Scarlett Li's avatar
Scarlett Li committed
312
## **Documentation**
313
314
315
* To learn about what's NNI, read the [NNI Overview](https://nni.readthedocs.io/en/latest/Overview.html). 
* To get yourself familiar with how to use NNI, read the [documentation](https://nni.readthedocs.io/en/latest/index.html). 
* To get started and install NNI on your system, please refer to [Install NNI](docs/en_US/Tutorial/Installation.md).
Chi Song's avatar
Chi Song committed
316

317
318
## **Contributing**
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.
319

320
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
Scarlett Li's avatar
Scarlett Li committed
321

322
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the Code of [Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact opencode@microsoft.com with any additional questions or comments.
323

324
325
After getting familiar with contribution agreements, you are ready to create your first PR =), follow the NNI developer tutorials to get start:
* We recommend new contributors to start with ['good first issue'](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) or ['help-wanted'](https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22), these issues are simple and easy to start.
326
* [NNI developer environment installation tutorial](docs/en_US/Tutorial/SetupNniDeveloperEnvironment.md)
327
* [How to debug](docs/en_US/Tutorial/HowToDebug.md)
328
* [Customize your own Tuner](docs/en_US/Tuner/CustomizeTuner.md)
329
* [Implement customized TrainingService](docs/en_US/TrainingService/HowToImplementTrainingService.md)
330
331
* [Implement a new NAS trainer on NNI](https://github.com/microsoft/nni/blob/master/docs/en_US/NAS/NasInterface.md#implement-a-new-nas-trainer-on-nni)
* [Customize your own Advisor](docs/en_US/Tuner/CustomizeAdvisor.md)
332

rabbit008's avatar
rabbit008 committed
333
334
## **External Repositories and References**
With authors' permission, we listed a set of NNI usage examples and relevant articles.
335
336
337
* ### **External Repositories** ###
   * Run [ENAS](examples/tuners/enas_nni/README.md) with NNI
   * Run [Neural Network Architecture Search](examples/trials/nas_cifar10/README.md) with NNI 
338
   * [Automatic Feature Engineering](examples/feature_engineering/auto-feature-engineering/README.md) with NNI 
339
   * [Hyperparameter Tuning for Matrix Factorization](https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb) with NNI
QuanluZhang's avatar
QuanluZhang committed
340
   * [scikit-nni](https://github.com/ksachdeva/scikit-nni) Hyper-parameter search for scikit-learn pipelines using NNI
341
342
343
344
345
346
347
348

* ### **Relevant Articles** ###
  
  * [Hyper Parameter Optimization Comparison](docs/en_US/CommunitySharings/HpoComparision.md)
  * [Neural Architecture Search Comparison](docs/en_US/CommunitySharings/NasComparision.md)
  * [Parallelizing a Sequential Algorithm TPE](docs/en_US/CommunitySharings/ParallelizingTpeSearch.md)
  * [Automatically tuning SVD with NNI](docs/en_US/CommunitySharings/RecommendersSvd.md)
  * [Automatically tuning SPTAG with NNI](docs/en_US/CommunitySharings/SptagAutoTune.md)
QuanluZhang's avatar
QuanluZhang committed
349
  * [Find thy hyper-parameters for scikit-learn pipelines using Microsoft NNI](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
350
  * **Blog (in Chinese)** - [AutoML tools (Advisor, NNI and Google Vizier) comparison](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) by [@gaocegege](https://github.com/gaocegege) - 总结与分析 section of design and implementation of kubeflow/katib
Scarlett Li's avatar
Scarlett Li committed
351
  * **Blog (in Chinese)** - [A summary of NNI new capabilities in 2019](https://mp.weixin.qq.com/s/7_KRT-rRojQbNuJzkjFMuA) by @squirrelsc
352
353

## **Feedback**
354
* Discuss on the NNI [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) in NNI.
355
* [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
356
* Ask a question with NNI tags on [Stack Overflow](https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true).
Chi Song's avatar
Chi Song committed
357

358
359
360
361
362
363
364
365
366
## Related Projects
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-research-group-asia/) had also released few other open source projects.

* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.

We encourage researchers and students leverage these projects to accelerate the AI development and research.
Microsoft Open Source's avatar
Microsoft Open Source committed
367

Chi Song's avatar
Chi Song committed
368
369
## **License**

370
The entire codebase is under [MIT license](LICENSE)
371