20.txt 1.26 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
..

   1.1 Declare NNI API
       Include `import nni` in your trial code to use NNI APIs.

   1.2 Get predefined parameters
       Use the following code snippet:

           RECEIVED_PARAMS = nni.get_next_parameter()

       to get hyper-parameters' values assigned by tuner. `RECEIVED_PARAMS` is an object, for example:

           {"conv_size": 2, "hidden_size": 124, "learning_rate": 0.0307, "dropout_rate": 0.2029}

   1.3 Report NNI results
       Use the API:

           `nni.report_intermediate_result(accuracy)`

       to send `accuracy` to assessor.

       Use the API:

           `nni.report_final_result(accuracy)`

       to send `accuracy` to tuner.
%%%%%%
* Declare NNI API: include ``import nni`` in your trial code to use NNI APIs.
* Get predefined parameters

Use the following code snippet:

.. code-block:: python

   RECEIVED_PARAMS = nni.get_next_parameter()

to get hyper-parameters' values assigned by tuner. ``RECEIVED_PARAMS`` is an object, for example:

.. code-block:: json

   {"conv_size": 2, "hidden_size": 124, "learning_rate": 0.0307, "dropout_rate": 0.2029}

* Report NNI results: Use the API: ``nni.report_intermediate_result(accuracy)`` to send ``accuracy`` to assessor.
  Use the API: ``nni.report_final_result(accuracy)`` to send `accuracy` to tuner.