.. 1.1 Declare NNI API Include `import nni` in your trial code to use NNI APIs. 1.2 Get predefined parameters Use the following code snippet: RECEIVED_PARAMS = nni.get_next_parameter() to get hyper-parameters' values assigned by tuner. `RECEIVED_PARAMS` is an object, for example: {"conv_size": 2, "hidden_size": 124, "learning_rate": 0.0307, "dropout_rate": 0.2029} 1.3 Report NNI results Use the API: `nni.report_intermediate_result(accuracy)` to send `accuracy` to assessor. Use the API: `nni.report_final_result(accuracy)` to send `accuracy` to tuner. %%%%%% * Declare NNI API: include ``import nni`` in your trial code to use NNI APIs. * Get predefined parameters Use the following code snippet: .. code-block:: python RECEIVED_PARAMS = nni.get_next_parameter() to get hyper-parameters' values assigned by tuner. ``RECEIVED_PARAMS`` is an object, for example: .. code-block:: json {"conv_size": 2, "hidden_size": 124, "learning_rate": 0.0307, "dropout_rate": 0.2029} * Report NNI results: Use the API: ``nni.report_intermediate_result(accuracy)`` to send ``accuracy`` to assessor. Use the API: ``nni.report_final_result(accuracy)`` to send `accuracy` to tuner.