multi_trial.py 7.17 KB
Newer Older
1
2
# This file is to demo the usage of multi-trial NAS in the usage of SPOS search space.

3
4
5
6
7
8
9
10
11
12
13
14
15
import click
import nni.retiarii.evaluator.pytorch as pl
import nni.retiarii.nn.pytorch as nn
import nni.retiarii.strategy as strategy
import torch
from nni.retiarii import serialize
from nni.retiarii.nn.pytorch import LayerChoice
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment
from torchvision import transforms
from torchvision.datasets import CIFAR10

from blocks import ShuffleNetBlock, ShuffleXceptionBlock

16
17
from nn_meter import get_default_config, load_latency_predictors

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

class ShuffleNetV2(nn.Module):
    block_keys = [
        'shufflenet_3x3',
        'shufflenet_5x5',
        'shufflenet_7x7',
        'xception_3x3',
    ]

    def __init__(self, input_size=224, first_conv_channels=16, last_conv_channels=1024, n_classes=1000, affine=False):
        super().__init__()

        assert input_size % 32 == 0

        self.stage_blocks = [4, 4, 8, 4]
        self.stage_channels = [64, 160, 320, 640]
        self._parsed_flops = dict()
        self._input_size = input_size
        self._feature_map_size = input_size
        self._first_conv_channels = first_conv_channels
        self._last_conv_channels = last_conv_channels
        self._n_classes = n_classes
        self._affine = affine

        # building first layer
        self.first_conv = nn.Sequential(
            nn.Conv2d(3, first_conv_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(first_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self._feature_map_size //= 2

        p_channels = first_conv_channels
        features = []
        for num_blocks, channels in zip(self.stage_blocks, self.stage_channels):
            features.extend(self._make_blocks(num_blocks, p_channels, channels))
            p_channels = channels
        self.features = nn.Sequential(*features)

        self.conv_last = nn.Sequential(
            nn.Conv2d(p_channels, last_conv_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(last_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self.globalpool = nn.AvgPool2d(self._feature_map_size)
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Sequential(
            nn.Linear(last_conv_channels, n_classes, bias=False),
        )

        self._initialize_weights()

    def _make_blocks(self, blocks, in_channels, channels):
        result = []
        for i in range(blocks):
            stride = 2 if i == 0 else 1
            inp = in_channels if i == 0 else channels
            oup = channels

            base_mid_channels = channels // 2
            mid_channels = int(base_mid_channels)  # prepare for scale
            choice_block = LayerChoice([
80
81
82
83
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=3, stride=stride, affine=self._affine),
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=5, stride=stride, affine=self._affine),
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=7, stride=stride, affine=self._affine),
                ShuffleXceptionBlock(inp, oup, mid_channels=mid_channels, stride=stride, affine=self._affine)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
            ])
            result.append(choice_block)

            if stride == 2:
                self._feature_map_size //= 2
        return result

    def forward(self, x):
        bs = x.size(0)
        x = self.first_conv(x)
        x = self.features(x)
        x = self.conv_last(x)
        x = self.globalpool(x)

        x = self.dropout(x)
        x = x.contiguous().view(bs, -1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        # FIXME this won't work in base engine
        for name, m in self.named_modules():
            if isinstance(m, nn.Conv2d):
                if 'first' in name:
                    torch.nn.init.normal_(m.weight, 0, 0.01)
                else:
                    torch.nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1])
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                if m.weight is not None:
                    torch.nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0.0001)
                torch.nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.BatchNorm1d):
                torch.nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0.0001)
                torch.nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.Linear):
                torch.nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0)


130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
class LatencyFilter:
    def __init__(self, threshold, config=None, hardware='', reverse=False):
        """
        Filter the models according to predcted latency.

        Parameters
        ----------
        threshold: `float`
            the threshold of latency
        config, hardware:
            determine the targeted device
        reverse: `bool`
            if reverse is `False`, then the model returns `True` when `latency < threshold`,
            else otherwisse
        """
        default_config, default_hardware = get_default_config()
        if config is None:
            config = default_config
        if not hardware:
            hardware = default_hardware

        self.predictors = load_latency_predictors(config, hardware)
        self.threshold = threshold

    def __call__(self, ir_model):
        latency = self.predictors.predict(ir_model, 'nni')
        return latency < self.threshold


159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
@click.command()
@click.option('--port', default=8081, help='On which port the experiment is run.')
def _main(port):
    base_model = ShuffleNetV2(32)
    transf = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip()
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize([0.49139968, 0.48215827, 0.44653124], [0.24703233, 0.24348505, 0.26158768])
    ]
    train_dataset = serialize(CIFAR10, 'data', train=True, download=True, transform=transforms.Compose(transf + normalize))
    test_dataset = serialize(CIFAR10, 'data', train=False, transform=transforms.Compose(normalize))

    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=64),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=64),
                                max_epochs=2, gpus=1)

178
    simple_strategy = strategy.Random(model_filter=LatencyFilter(100))
179
180
181
182
183
184
185
186
187

    exp = RetiariiExperiment(base_model, trainer, [], simple_strategy)

    exp_config = RetiariiExeConfig('local')
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = 2
    exp_config.trial_gpu_number = 1
    exp_config.training_service.use_active_gpu = False
    exp_config.execution_engine = 'base'
188
    exp_config.dummy_input = [1, 3, 32, 32]
189
190
191
192
193
194
195
196
197
198

    exp.run(exp_config, port)

    print('Exported models:')
    for model in exp.export_top_models(formatter='dict'):
        print(model)


if __name__ == '__main__':
    _main()