multi_trial.py 6.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import click
import nni.retiarii.evaluator.pytorch as pl
import nni.retiarii.nn.pytorch as nn
import nni.retiarii.strategy as strategy
import torch
from nni.retiarii import serialize
from nni.retiarii.nn.pytorch import LayerChoice
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment
from torchvision import transforms
from torchvision.datasets import CIFAR10

from blocks import ShuffleNetBlock, ShuffleXceptionBlock


class ShuffleNetV2(nn.Module):
    block_keys = [
        'shufflenet_3x3',
        'shufflenet_5x5',
        'shufflenet_7x7',
        'xception_3x3',
    ]

    def __init__(self, input_size=224, first_conv_channels=16, last_conv_channels=1024, n_classes=1000, affine=False):
        super().__init__()

        assert input_size % 32 == 0

        self.stage_blocks = [4, 4, 8, 4]
        self.stage_channels = [64, 160, 320, 640]
        self._parsed_flops = dict()
        self._input_size = input_size
        self._feature_map_size = input_size
        self._first_conv_channels = first_conv_channels
        self._last_conv_channels = last_conv_channels
        self._n_classes = n_classes
        self._affine = affine

        # building first layer
        self.first_conv = nn.Sequential(
            nn.Conv2d(3, first_conv_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(first_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self._feature_map_size //= 2

        p_channels = first_conv_channels
        features = []
        for num_blocks, channels in zip(self.stage_blocks, self.stage_channels):
            features.extend(self._make_blocks(num_blocks, p_channels, channels))
            p_channels = channels
        self.features = nn.Sequential(*features)

        self.conv_last = nn.Sequential(
            nn.Conv2d(p_channels, last_conv_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(last_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self.globalpool = nn.AvgPool2d(self._feature_map_size)
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Sequential(
            nn.Linear(last_conv_channels, n_classes, bias=False),
        )

        self._initialize_weights()

    def _make_blocks(self, blocks, in_channels, channels):
        result = []
        for i in range(blocks):
            stride = 2 if i == 0 else 1
            inp = in_channels if i == 0 else channels
            oup = channels

            base_mid_channels = channels // 2
            mid_channels = int(base_mid_channels)  # prepare for scale
            choice_block = LayerChoice([
                serialize(ShuffleNetBlock, inp, oup, mid_channels=mid_channels, ksize=3, stride=stride, affine=self._affine),
                serialize(ShuffleNetBlock, inp, oup, mid_channels=mid_channels, ksize=5, stride=stride, affine=self._affine),
                serialize(ShuffleNetBlock, inp, oup, mid_channels=mid_channels, ksize=7, stride=stride, affine=self._affine),
                serialize(ShuffleXceptionBlock, inp, oup, mid_channels=mid_channels, stride=stride, affine=self._affine)
            ])
            result.append(choice_block)

            if stride == 2:
                self._feature_map_size //= 2
        return result

    def forward(self, x):
        bs = x.size(0)
        x = self.first_conv(x)
        x = self.features(x)
        x = self.conv_last(x)
        x = self.globalpool(x)

        x = self.dropout(x)
        x = x.contiguous().view(bs, -1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        # FIXME this won't work in base engine
        for name, m in self.named_modules():
            if isinstance(m, nn.Conv2d):
                if 'first' in name:
                    torch.nn.init.normal_(m.weight, 0, 0.01)
                else:
                    torch.nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1])
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                if m.weight is not None:
                    torch.nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0.0001)
                torch.nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.BatchNorm1d):
                torch.nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0.0001)
                torch.nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.Linear):
                torch.nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0)


@click.command()
@click.option('--port', default=8081, help='On which port the experiment is run.')
def _main(port):
    base_model = ShuffleNetV2(32)
    transf = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip()
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize([0.49139968, 0.48215827, 0.44653124], [0.24703233, 0.24348505, 0.26158768])
    ]
    train_dataset = serialize(CIFAR10, 'data', train=True, download=True, transform=transforms.Compose(transf + normalize))
    test_dataset = serialize(CIFAR10, 'data', train=False, transform=transforms.Compose(normalize))

    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=64),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=64),
                                max_epochs=2, gpus=1)

    simple_strategy = strategy.Random()

    exp = RetiariiExperiment(base_model, trainer, [], simple_strategy)

    exp_config = RetiariiExeConfig('local')
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = 2
    exp_config.trial_gpu_number = 1
    exp_config.training_service.use_active_gpu = False
    exp_config.execution_engine = 'base'

    exp.run(exp_config, port)

    print('Exported models:')
    for model in exp.export_top_models(formatter='dict'):
        print(model)


if __name__ == '__main__':
    _main()