ngp.py 6.45 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
8
from typing import Callable, List, Union

import torch
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd

try:
    import tinycudann as tcnn
Ruilong Li's avatar
Ruilong Li committed
9
except ImportError as e:
Ruilong Li's avatar
Ruilong Li committed
10
    print(
Ruilong Li's avatar
Ruilong Li committed
11
        f"Error: {e}! "
Ruilong Li's avatar
Ruilong Li committed
12
13
14
15
16
17
        "Please install tinycudann by: "
        "pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch"
    )
    exit()


Ruilong Li's avatar
Ruilong Li committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class _TruncExp(Function):  # pylint: disable=abstract-method
    # Implementation from torch-ngp:
    # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, x):  # pylint: disable=arguments-differ
        ctx.save_for_backward(x)
        return torch.exp(x)

    @staticmethod
    @custom_bwd
    def backward(ctx, g):  # pylint: disable=arguments-differ
        x = ctx.saved_tensors[0]
        return g * torch.exp(torch.clamp(x, max=15))
Ruilong Li's avatar
Ruilong Li committed
32
33


Ruilong Li's avatar
Ruilong Li committed
34
trunc_exp = _TruncExp.apply
Ruilong Li's avatar
Ruilong Li committed
35

Ruilong Li's avatar
Ruilong Li committed
36

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def contract_to_unisphere(
    x: torch.Tensor,
    aabb: torch.Tensor,
    eps: float = 1e-6,
    derivative: bool = False,
):
    aabb_min, aabb_max = torch.split(aabb, 3, dim=-1)
    x = (x - aabb_min) / (aabb_max - aabb_min)
    x = x * 2 - 1  # aabb is at [-1, 1]
    mag = x.norm(dim=-1, keepdim=True)
    mask = mag.squeeze(-1) > 1

    if derivative:
        dev = (2 * mag - 1) / mag**2 + 2 * x**2 * (
            1 / mag**3 - (2 * mag - 1) / mag**4
        )
        dev[~mask] = 1.0
        dev = torch.clamp(dev, min=eps)
        return dev
    else:
        x[mask] = (2 - 1 / mag[mask]) * (x[mask] / mag[mask])
        x = x / 4 + 0.5  # [-inf, inf] is at [0, 1]
        return x


Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
62
class NGPradianceField(torch.nn.Module):
Ruilong Li's avatar
Ruilong Li committed
63
    """Instance-NGP radiance Field"""
Ruilong Li's avatar
Ruilong Li committed
64
65
66
67
68
69

    def __init__(
        self,
        aabb: Union[torch.Tensor, List[float]],
        num_dim: int = 3,
        use_viewdirs: bool = True,
Ruilong Li's avatar
Ruilong Li committed
70
        density_activation: Callable = lambda x: trunc_exp(x - 1),
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
71
        unbounded: bool = False,
Ruilong Li's avatar
Ruilong Li committed
72
73
74
75
76
77
78
79
    ) -> None:
        super().__init__()
        if not isinstance(aabb, torch.Tensor):
            aabb = torch.tensor(aabb, dtype=torch.float32)
        self.register_buffer("aabb", aabb)
        self.num_dim = num_dim
        self.use_viewdirs = use_viewdirs
        self.density_activation = density_activation
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
80
        self.unbounded = unbounded
Ruilong Li's avatar
Ruilong Li committed
81
82
83
84
85
86
87
88

        self.geo_feat_dim = 15
        per_level_scale = 1.4472692012786865

        if self.use_viewdirs:
            self.direction_encoding = tcnn.Encoding(
                n_input_dims=num_dim,
                encoding_config={
Ruilong Li's avatar
Ruilong Li committed
89
90
91
92
93
94
95
96
97
                    "otype": "Composite",
                    "nested": [
                        {
                            "n_dims_to_encode": 3,
                            "otype": "SphericalHarmonics",
                            "degree": 4,
                        },
                        # {"otype": "Identity", "n_bins": 4, "degree": 4},
                    ],
Ruilong Li's avatar
Ruilong Li committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
                },
            )

        self.mlp_base = tcnn.NetworkWithInputEncoding(
            n_input_dims=num_dim,
            n_output_dims=1 + self.geo_feat_dim,
            encoding_config={
                "otype": "HashGrid",
                "n_levels": 16,
                "n_features_per_level": 2,
                "log2_hashmap_size": 19,
                "base_resolution": 16,
                "per_level_scale": per_level_scale,
            },
            network_config={
                "otype": "FullyFusedMLP",
                "activation": "ReLU",
                "output_activation": "None",
                "n_neurons": 64,
                "n_hidden_layers": 1,
            },
        )

        self.mlp_head = tcnn.Network(
            n_input_dims=(
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
123
124
125
126
127
                (
                    self.direction_encoding.n_output_dims
                    if self.use_viewdirs
                    else 0
                )
Ruilong Li's avatar
Ruilong Li committed
128
129
130
131
132
133
134
135
136
137
138
139
                + self.geo_feat_dim
            ),
            n_output_dims=3,
            network_config={
                "otype": "FullyFusedMLP",
                "activation": "ReLU",
                "output_activation": "Sigmoid",
                "n_neurons": 64,
                "n_hidden_layers": 2,
            },
        )

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
140
141
142
    def query_opacity(self, x, step_size):
        density = self.query_density(x)
        if self.unbounded:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
143
144
145
146
147
            # NOTE: In principle, we should use the following formula to scale
            # up the step size, but in practice, it is somehow not helpful.
            # derivitive = contract_to_unisphere(x, self.aabb, derivative=True)
            # step_size = step_size / derivitive.norm(dim=-1, keepdim=True)
            pass
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
148
149
150
        opacity = density * step_size
        return opacity

Ruilong Li's avatar
Ruilong Li committed
151
    def query_density(self, x, return_feat: bool = False):
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
152
        if self.unbounded:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
153
            x = contract_to_unisphere(x, self.aabb)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
154
155
156
        else:
            aabb_min, aabb_max = torch.split(self.aabb, self.num_dim, dim=-1)
            x = (x - aabb_min) / (aabb_max - aabb_min)
Ruilong Li's avatar
Ruilong Li committed
157
158
159
160
161
162
163
164
165
166
        selector = ((x > 0.0) & (x < 1.0)).all(dim=-1)
        x = (
            self.mlp_base(x.view(-1, self.num_dim))
            .view(list(x.shape[:-1]) + [1 + self.geo_feat_dim])
            .to(x)
        )
        density_before_activation, base_mlp_out = torch.split(
            x, [1, self.geo_feat_dim], dim=-1
        )
        density = (
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
167
168
            self.density_activation(density_before_activation)
            * selector[..., None]
Ruilong Li's avatar
Ruilong Li committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        )
        if return_feat:
            return density, base_mlp_out
        else:
            return density

    def _query_rgb(self, dir, embedding):
        # tcnn requires directions in the range [0, 1]
        if self.use_viewdirs:
            dir = (dir + 1.0) / 2.0
            d = self.direction_encoding(dir.view(-1, dir.shape[-1]))
            h = torch.cat([d, embedding.view(-1, self.geo_feat_dim)], dim=-1)
        else:
            h = embedding.view(-1, self.geo_feat_dim)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
183
184
185
186
187
        rgb = (
            self.mlp_head(h)
            .view(list(embedding.shape[:-1]) + [3])
            .to(embedding)
        )
Ruilong Li's avatar
Ruilong Li committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        return rgb

    def forward(
        self,
        positions: torch.Tensor,
        directions: torch.Tensor = None,
    ):
        if self.use_viewdirs and (directions is not None):
            assert (
                positions.shape == directions.shape
            ), f"{positions.shape} v.s. {directions.shape}"
            density, embedding = self.query_density(positions, return_feat=True)
            rgb = self._query_rgb(directions, embedding=embedding)
        return rgb, density