"sgl-kernel/vscode:/vscode.git/clone" did not exist on "5f1eb2048427c92672855fba87ca3957be1eaa75"
ngp.py 5.72 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
8
from typing import Callable, List, Union

import torch
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd

try:
    import tinycudann as tcnn
Ruilong Li's avatar
Ruilong Li committed
9
except ImportError as e:
Ruilong Li's avatar
Ruilong Li committed
10
    print(
Ruilong Li's avatar
Ruilong Li committed
11
        f"Error: {e}! "
Ruilong Li's avatar
Ruilong Li committed
12
13
14
15
16
17
18
19
        "Please install tinycudann by: "
        "pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch"
    )
    exit()

from .base import BaseRadianceField


Ruilong Li's avatar
Ruilong Li committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class _TruncExp(Function):  # pylint: disable=abstract-method
    # Implementation from torch-ngp:
    # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, x):  # pylint: disable=arguments-differ
        ctx.save_for_backward(x)
        return torch.exp(x)

    @staticmethod
    @custom_bwd
    def backward(ctx, g):  # pylint: disable=arguments-differ
        x = ctx.saved_tensors[0]
        return g * torch.exp(torch.clamp(x, max=15))
Ruilong Li's avatar
Ruilong Li committed
34
35


Ruilong Li's avatar
Ruilong Li committed
36
trunc_exp = _TruncExp.apply
Ruilong Li's avatar
Ruilong Li committed
37

Ruilong Li's avatar
Ruilong Li committed
38
39
40

class NGPradianceField(BaseRadianceField):
    """Instance-NGP radiance Field"""
Ruilong Li's avatar
Ruilong Li committed
41
42
43
44
45
46

    def __init__(
        self,
        aabb: Union[torch.Tensor, List[float]],
        num_dim: int = 3,
        use_viewdirs: bool = True,
Ruilong Li's avatar
Ruilong Li committed
47
48
        density_activation: Callable = lambda x: trunc_exp(x - 1),
        # density_activation: Callable = lambda x: torch.nn.functional.softplus(x - 1),
Ruilong Li's avatar
Ruilong Li committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    ) -> None:
        super().__init__()
        if not isinstance(aabb, torch.Tensor):
            aabb = torch.tensor(aabb, dtype=torch.float32)
        self.register_buffer("aabb", aabb)
        self.num_dim = num_dim
        self.use_viewdirs = use_viewdirs
        self.density_activation = density_activation

        self.geo_feat_dim = 15
        per_level_scale = 1.4472692012786865

        if self.use_viewdirs:
            self.direction_encoding = tcnn.Encoding(
                n_input_dims=num_dim,
                encoding_config={
Ruilong Li's avatar
Ruilong Li committed
65
66
67
68
69
70
71
72
73
                    "otype": "Composite",
                    "nested": [
                        {
                            "n_dims_to_encode": 3,
                            "otype": "SphericalHarmonics",
                            "degree": 4,
                        },
                        # {"otype": "Identity", "n_bins": 4, "degree": 4},
                    ],
Ruilong Li's avatar
Ruilong Li committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
                },
            )

        self.mlp_base = tcnn.NetworkWithInputEncoding(
            n_input_dims=num_dim,
            n_output_dims=1 + self.geo_feat_dim,
            encoding_config={
                "otype": "HashGrid",
                "n_levels": 16,
                "n_features_per_level": 2,
                "log2_hashmap_size": 19,
                "base_resolution": 16,
                "per_level_scale": per_level_scale,
            },
            network_config={
                "otype": "FullyFusedMLP",
                "activation": "ReLU",
                "output_activation": "None",
                "n_neurons": 64,
                "n_hidden_layers": 1,
            },
        )

        self.mlp_head = tcnn.Network(
            n_input_dims=(
                (self.direction_encoding.n_output_dims if self.use_viewdirs else 0)
                + self.geo_feat_dim
            ),
            n_output_dims=3,
            network_config={
                "otype": "FullyFusedMLP",
                "activation": "ReLU",
                "output_activation": "Sigmoid",
                "n_neurons": 64,
                "n_hidden_layers": 2,
            },
        )

    def query_density(self, x, return_feat: bool = False):
        bb_min, bb_max = torch.split(self.aabb, [self.num_dim, self.num_dim], dim=0)
        x = (x - bb_min) / (bb_max - bb_min)
        selector = ((x > 0.0) & (x < 1.0)).all(dim=-1)
        x = (
            self.mlp_base(x.view(-1, self.num_dim))
            .view(list(x.shape[:-1]) + [1 + self.geo_feat_dim])
            .to(x)
        )
        density_before_activation, base_mlp_out = torch.split(
            x, [1, self.geo_feat_dim], dim=-1
        )
        density = (
            self.density_activation(density_before_activation) * selector[..., None]
        )
        if return_feat:
            return density, base_mlp_out
        else:
            return density

    def _query_rgb(self, dir, embedding):
        # tcnn requires directions in the range [0, 1]
        if self.use_viewdirs:
            dir = (dir + 1.0) / 2.0
            d = self.direction_encoding(dir.view(-1, dir.shape[-1]))
            h = torch.cat([d, embedding.view(-1, self.geo_feat_dim)], dim=-1)
        else:
            h = embedding.view(-1, self.geo_feat_dim)
        rgb = self.mlp_head(h).view(list(embedding.shape[:-1]) + [3]).to(embedding)
        return rgb

    def forward(
        self,
        positions: torch.Tensor,
        directions: torch.Tensor = None,
        mask: torch.Tensor = None,
Ruilong Li's avatar
Ruilong Li committed
148
        only_density: bool = False,
Ruilong Li's avatar
Ruilong Li committed
149
150
151
152
153
154
155
156
157
    ):
        if self.use_viewdirs and (directions is not None):
            assert (
                positions.shape == directions.shape
            ), f"{positions.shape} v.s. {directions.shape}"
        if mask is not None:
            density = torch.zeros_like(positions[..., :1])
            rgb = torch.zeros(list(positions.shape[:-1]) + [3], device=positions.device)
            density[mask], embedding = self.query_density(positions[mask])
Ruilong Li's avatar
Ruilong Li committed
158
159
160
            if only_density:
                return density

Ruilong Li's avatar
Ruilong Li committed
161
162
163
164
165
166
            rgb[mask] = self.query_rgb(
                directions[mask] if directions is not None else None,
                embedding=embedding,
            )
        else:
            density, embedding = self.query_density(positions, return_feat=True)
Ruilong Li's avatar
Ruilong Li committed
167
168
169
            if only_density:
                return density

Ruilong Li's avatar
Ruilong Li committed
170
171
172
            rgb = self._query_rgb(directions, embedding=embedding)

        return rgb, density