test_scan.py 6.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
import pytest
import torch

device = "cuda:0"


@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_inclusive_sum():
    from nerfacc.scan import inclusive_sum
Ruilong Li's avatar
Ruilong Li committed
10
    from nerfacc.scan_cub import inclusive_sum_cub
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

    torch.manual_seed(42)

    data = torch.rand((5, 1000), device=device, requires_grad=True)
    outputs1 = inclusive_sum(data)
    outputs1 = outputs1.flatten()
    outputs1.sum().backward()
    grad1 = data.grad.clone()
    data.grad.zero_()

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    outputs2 = inclusive_sum(flatten_data, packed_info=packed_info)
    outputs2.sum().backward()
    grad2 = data.grad.clone()
Ruilong Li's avatar
Ruilong Li committed
32
33
34
35
36
37
38
39
40
    data.grad.zero_()

    indices = torch.arange(data.shape[0], device=device, dtype=torch.long)
    indices = indices.repeat_interleave(data.shape[1])
    indices = indices.flatten()
    outputs3 = inclusive_sum_cub(flatten_data, indices)
    outputs3.sum().backward()
    grad3 = data.grad.clone()
    data.grad.zero_()
41
42
43
44

    assert torch.allclose(outputs1, outputs2)
    assert torch.allclose(grad1, grad2)

Ruilong Li's avatar
Ruilong Li committed
45
46
47
    assert torch.allclose(outputs1, outputs3)
    assert torch.allclose(grad1, grad3)

48
49
50
51

@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_exclusive_sum():
    from nerfacc.scan import exclusive_sum
Ruilong Li's avatar
Ruilong Li committed
52
    from nerfacc.scan_cub import exclusive_sum_cub
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

    torch.manual_seed(42)

    data = torch.rand((5, 1000), device=device, requires_grad=True)
    outputs1 = exclusive_sum(data)
    outputs1 = outputs1.flatten()
    outputs1.sum().backward()
    grad1 = data.grad.clone()
    data.grad.zero_()

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    outputs2 = exclusive_sum(flatten_data, packed_info=packed_info)
    outputs2.sum().backward()
    grad2 = data.grad.clone()
Ruilong Li's avatar
Ruilong Li committed
74
75
76
77
78
79
80
81
82
    data.grad.zero_()

    indices = torch.arange(data.shape[0], device=device, dtype=torch.long)
    indices = indices.repeat_interleave(data.shape[1])
    indices = indices.flatten()
    outputs3 = exclusive_sum_cub(flatten_data, indices)
    outputs3.sum().backward()
    grad3 = data.grad.clone()
    data.grad.zero_()
83
84
85
86
87
88

    # TODO: check exclusive sum. numeric error?
    # print((outputs1 - outputs2).abs().max())  # 0.0002
    assert torch.allclose(outputs1, outputs2, atol=3e-4)
    assert torch.allclose(grad1, grad2)

Ruilong Li's avatar
Ruilong Li committed
89
90
91
    assert torch.allclose(outputs1, outputs3, atol=3e-4)
    assert torch.allclose(grad1, grad3)

92
93
94
95

@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_inclusive_prod():
    from nerfacc.scan import inclusive_prod
Ruilong Li's avatar
Ruilong Li committed
96
    from nerfacc.scan_cub import inclusive_prod_cub
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    torch.manual_seed(42)

    data = torch.rand((5, 1000), device=device, requires_grad=True)
    outputs1 = inclusive_prod(data)
    outputs1 = outputs1.flatten()
    outputs1.sum().backward()
    grad1 = data.grad.clone()
    data.grad.zero_()

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    outputs2 = inclusive_prod(flatten_data, packed_info=packed_info)
    outputs2.sum().backward()
    grad2 = data.grad.clone()
Ruilong Li's avatar
Ruilong Li committed
118
119
120
121
122
123
124
125
126
    data.grad.zero_()

    indices = torch.arange(data.shape[0], device=device, dtype=torch.long)
    indices = indices.repeat_interleave(data.shape[1])
    indices = indices.flatten()
    outputs3 = inclusive_prod_cub(flatten_data, indices)
    outputs3.sum().backward()
    grad3 = data.grad.clone()
    data.grad.zero_()
127
128
129
130

    assert torch.allclose(outputs1, outputs2)
    assert torch.allclose(grad1, grad2)

Ruilong Li's avatar
Ruilong Li committed
131
132
133
    assert torch.allclose(outputs1, outputs3)
    assert torch.allclose(grad1, grad3)

134
135
136
137

@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_exclusive_prod():
    from nerfacc.scan import exclusive_prod
Ruilong Li's avatar
Ruilong Li committed
138
    from nerfacc.scan_cub import exclusive_prod_cub
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    torch.manual_seed(42)

    data = torch.rand((5, 1000), device=device, requires_grad=True)
    outputs1 = exclusive_prod(data)
    outputs1 = outputs1.flatten()
    outputs1.sum().backward()
    grad1 = data.grad.clone()
    data.grad.zero_()

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    outputs2 = exclusive_prod(flatten_data, packed_info=packed_info)
    outputs2.sum().backward()
    grad2 = data.grad.clone()
Ruilong Li's avatar
Ruilong Li committed
160
161
162
163
164
165
166
167
168
    data.grad.zero_()

    indices = torch.arange(data.shape[0], device=device, dtype=torch.long)
    indices = indices.repeat_interleave(data.shape[1])
    indices = indices.flatten()
    outputs3 = exclusive_prod_cub(flatten_data, indices)
    outputs3.sum().backward()
    grad3 = data.grad.clone()
    data.grad.zero_()
169
170
171
172
173
174

    # TODO: check exclusive sum. numeric error?
    # print((outputs1 - outputs2).abs().max())
    assert torch.allclose(outputs1, outputs2)
    assert torch.allclose(grad1, grad2)

Ruilong Li's avatar
Ruilong Li committed
175
176
177
    assert torch.allclose(outputs1, outputs3)
    assert torch.allclose(grad1, grad3)

Ruilong Li's avatar
Ruilong Li committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def profile():
    import tqdm
    from nerfacc.scan import inclusive_sum
    from nerfacc.scan_cub import inclusive_sum_cub

    torch.manual_seed(42)

    data = torch.rand((8192, 8192), device=device, requires_grad=True)

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    torch.cuda.synchronize()
    for _ in tqdm.trange(2000):
        outputs2 = inclusive_sum(flatten_data, packed_info=packed_info)
        outputs2.sum().backward()

    indices = torch.arange(data.shape[0], device=device, dtype=torch.long)
    indices = indices.repeat_interleave(data.shape[1])
    indices = indices.flatten()
    torch.cuda.synchronize()
    for _ in tqdm.trange(2000):
        outputs3 = inclusive_sum_cub(flatten_data, indices)
        outputs3.sum().backward()

208
209
210
211
212

if __name__ == "__main__":
    test_inclusive_sum()
    test_exclusive_sum()
    test_inclusive_prod()
Ruilong Li's avatar
Ruilong Li committed
213
214
    test_exclusive_prod()
    # profile()