"vscode:/vscode.git/clone" did not exist on "6aca583420490d8bebafc6239085b49f78325c0c"
test_scan.py 4.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pytest
import torch

device = "cuda:0"


@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_inclusive_sum():
    from nerfacc.scan import inclusive_sum

    torch.manual_seed(42)

    data = torch.rand((5, 1000), device=device, requires_grad=True)
    outputs1 = inclusive_sum(data)
    outputs1 = outputs1.flatten()
    outputs1.sum().backward()
    grad1 = data.grad.clone()
    data.grad.zero_()

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    outputs2 = inclusive_sum(flatten_data, packed_info=packed_info)
    outputs2.sum().backward()
    grad2 = data.grad.clone()

    assert torch.allclose(outputs1, outputs2)
    assert torch.allclose(grad1, grad2)


@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_exclusive_sum():
    from nerfacc.scan import exclusive_sum

    torch.manual_seed(42)

    data = torch.rand((5, 1000), device=device, requires_grad=True)
    outputs1 = exclusive_sum(data)
    outputs1 = outputs1.flatten()
    outputs1.sum().backward()
    grad1 = data.grad.clone()
    data.grad.zero_()

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    outputs2 = exclusive_sum(flatten_data, packed_info=packed_info)
    outputs2.sum().backward()
    grad2 = data.grad.clone()

    # TODO: check exclusive sum. numeric error?
    # print((outputs1 - outputs2).abs().max())  # 0.0002
    assert torch.allclose(outputs1, outputs2, atol=3e-4)
    assert torch.allclose(grad1, grad2)


@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_inclusive_prod():
    from nerfacc.scan import inclusive_prod

    torch.manual_seed(42)

    data = torch.rand((5, 1000), device=device, requires_grad=True)
    outputs1 = inclusive_prod(data)
    outputs1 = outputs1.flatten()
    outputs1.sum().backward()
    grad1 = data.grad.clone()
    data.grad.zero_()

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    outputs2 = inclusive_prod(flatten_data, packed_info=packed_info)
    outputs2.sum().backward()
    grad2 = data.grad.clone()

    assert torch.allclose(outputs1, outputs2)
    assert torch.allclose(grad1, grad2)


@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_exclusive_prod():
    from nerfacc.scan import exclusive_prod

    torch.manual_seed(42)

    data = torch.rand((5, 1000), device=device, requires_grad=True)
    outputs1 = exclusive_prod(data)
    outputs1 = outputs1.flatten()
    outputs1.sum().backward()
    grad1 = data.grad.clone()
    data.grad.zero_()

    chunk_starts = torch.arange(
        0, data.numel(), data.shape[1], device=device, dtype=torch.long
    )
    chunk_cnts = torch.full(
        (data.shape[0],), data.shape[1], dtype=torch.long, device=device
    )
    packed_info = torch.stack([chunk_starts, chunk_cnts], dim=-1)
    flatten_data = data.flatten()
    outputs2 = exclusive_prod(flatten_data, packed_info=packed_info)
    outputs2.sum().backward()
    grad2 = data.grad.clone()

    # TODO: check exclusive sum. numeric error?
    # print((outputs1 - outputs2).abs().max())
    assert torch.allclose(outputs1, outputs2)
    assert torch.allclose(grad1, grad2)


if __name__ == "__main__":
    test_inclusive_sum()
    test_exclusive_sum()
    test_inclusive_prod()
    test_exclusive_prod()