train_mlp_nerf.py 6.76 KB
Newer Older
1
2
3
4
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
5
import argparse
Jingchen Ye's avatar
Jingchen Ye committed
6
import pathlib
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
7
8
9
10
11
12
13
import time

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
14
15
from datasets.nerf_synthetic import SubjectLoader
from lpips import LPIPS
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
16
from radiance_fields.mlp import VanillaNeRFRadianceField
17
18

from examples.utils import (
19
    NERF_SYNTHETIC_SCENES,
20
    render_image_with_occgrid,
21
22
    set_random_seed,
)
23
from nerfacc.estimators.occ_grid import OccGridEstimator
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
24

25
26
device = "cuda:0"
set_random_seed(42)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
27

28
29
30
31
32
33
34
35
36
37
parser = argparse.ArgumentParser()
parser.add_argument(
    "--data_root",
    type=str,
    default=str(pathlib.Path.cwd() / "data/nerf_synthetic"),
    help="the root dir of the dataset",
)
parser.add_argument(
    "--train_split",
    type=str,
38
    default="train",
39
40
41
    choices=["train", "trainval"],
    help="which train split to use",
)
42
43
44
45
46
47
parser.add_argument(
    "--model_path",
    type=str,
    default=None,
    help="the path of the pretrained model",
)
48
49
50
51
parser.add_argument(
    "--scene",
    type=str,
    default="lego",
52
    choices=NERF_SYNTHETIC_SCENES,
53
54
55
56
57
    help="which scene to use",
)
parser.add_argument(
    "--test_chunk_size",
    type=int,
58
    default=4096,
59
60
)
args = parser.parse_args()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
61

62
63
64
65
66
67
68
69
70
71
72
73
74
# training parameters
max_steps = 50000
init_batch_size = 1024
target_sample_batch_size = 1 << 16
# scene parameters
aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5], device=device)
near_plane = 0.0
far_plane = 1.0e10
# model parameters
grid_resolution = 128
grid_nlvl = 1
# render parameters
render_step_size = 5e-3
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
75

76
77
78
79
80
# setup the dataset
train_dataset = SubjectLoader(
    subject_id=args.scene,
    root_fp=args.data_root,
    split=args.train_split,
81
    num_rays=init_batch_size,
82
83
84
85
86
87
88
89
90
91
    device=device,
)
test_dataset = SubjectLoader(
    subject_id=args.scene,
    root_fp=args.data_root,
    split="test",
    num_rays=None,
    device=device,
)

92
93
94
estimator = OccGridEstimator(
    roi_aabb=aabb, resolution=grid_resolution, levels=grid_nlvl
).to(device)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
95

96
97
98
99
100
101
102
103
104
105
106
107
108
# setup the radiance field we want to train.
radiance_field = VanillaNeRFRadianceField().to(device)
optimizer = torch.optim.Adam(radiance_field.parameters(), lr=5e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
    optimizer,
    milestones=[
        max_steps // 2,
        max_steps * 3 // 4,
        max_steps * 5 // 6,
        max_steps * 9 // 10,
    ],
    gamma=0.33,
)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
109

110
111
112
lpips_net = LPIPS(net="vgg").to(device)
lpips_norm_fn = lambda x: x[None, ...].permute(0, 3, 1, 2) * 2 - 1
lpips_fn = lambda x, y: lpips_net(lpips_norm_fn(x), lpips_norm_fn(y)).mean()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
113

114
115
116
117
118
if args.model_path is not None:
    checkpoint = torch.load(args.model_path)
    radiance_field.load_state_dict(checkpoint["radiance_field_state_dict"])
    optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
    scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
119
    estimator.load_state_dict(checkpoint["estimator_state_dict"])
120
121
122
123
    step = checkpoint["step"]
else:
    step = 0

124
125
# training
tic = time.time()
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
for step in range(max_steps + 1):
    radiance_field.train()
    estimator.train()

    i = torch.randint(0, len(train_dataset), (1,)).item()
    data = train_dataset[i]

    render_bkgd = data["color_bkgd"]
    rays = data["rays"]
    pixels = data["pixels"]

    def occ_eval_fn(x):
        density = radiance_field.query_density(x)
        return density * render_step_size

    # update occupancy grid
    estimator.update_every_n_steps(
        step=step,
        occ_eval_fn=occ_eval_fn,
        occ_thre=1e-2,
    )

    # render
    rgb, acc, depth, n_rendering_samples = render_image_with_occgrid(
        radiance_field,
        estimator,
        rays,
        # rendering options
        near_plane=near_plane,
        render_step_size=render_step_size,
        render_bkgd=render_bkgd,
    )
    if n_rendering_samples == 0:
        continue

    if target_sample_batch_size > 0:
162
163
164
165
166
167
        # dynamic batch size for rays to keep sample batch size constant.
        num_rays = len(pixels)
        num_rays = int(
            num_rays * (target_sample_batch_size / float(n_rendering_samples))
        )
        train_dataset.update_num_rays(num_rays)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    # compute loss
    loss = F.smooth_l1_loss(rgb, pixels)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    scheduler.step()

    if step % 5000 == 0:
        elapsed_time = time.time() - tic
        loss = F.mse_loss(rgb, pixels)
        psnr = -10.0 * torch.log(loss) / np.log(10.0)
        print(
            f"elapsed_time={elapsed_time:.2f}s | step={step} | "
            f"loss={loss:.5f} | psnr={psnr:.2f} | "
            f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} | "
            f"max_depth={depth.max():.3f} | "
        )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
187

188
189
190
191
192
193
194
195
196
197
198
199
    if step > 0 and step % max_steps == 0:
        model_save_path = str(pathlib.Path.cwd() / f"mlp_nerf_{step}")
        torch.save(
            {
                "step": step,
                "radiance_field_state_dict": radiance_field.state_dict(),
                "optimizer_state_dict": optimizer.state_dict(),
                "scheduler_state_dict": scheduler.state_dict(),
                "estimator_state_dict": estimator.state_dict(),
            },
            model_save_path,
        )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        # evaluation
        radiance_field.eval()
        estimator.eval()

        psnrs = []
        lpips = []
        with torch.no_grad():
            for i in tqdm.tqdm(range(len(test_dataset))):
                data = test_dataset[i]
                render_bkgd = data["color_bkgd"]
                rays = data["rays"]
                pixels = data["pixels"]

                # rendering
                rgb, acc, depth, _ = render_image_with_occgrid(
                    radiance_field,
                    estimator,
                    rays,
                    # rendering options
                    near_plane=near_plane,
                    render_step_size=render_step_size,
                    render_bkgd=render_bkgd,
                    # test options
                    test_chunk_size=args.test_chunk_size,
                )
                mse = F.mse_loss(rgb, pixels)
                psnr = -10.0 * torch.log(mse) / np.log(10.0)
                psnrs.append(psnr.item())
                lpips.append(lpips_fn(rgb, pixels).item())
                # if i == 0:
                #     imageio.imwrite(
                #         "rgb_test.png",
                #         (rgb.cpu().numpy() * 255).astype(np.uint8),
                #     )
                #     imageio.imwrite(
                #         "rgb_error.png",
                #         (
                #             (rgb - pixels).norm(dim=-1).cpu().numpy() * 255
                #         ).astype(np.uint8),
                #     )
        psnr_avg = sum(psnrs) / len(psnrs)
        lpips_avg = sum(lpips) / len(lpips)
        print(f"evaluation: psnr_avg={psnr_avg}, lpips_avg={lpips_avg}")