train_mlp_nerf.py 8.14 KB
Newer Older
1
2
3
4
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
5
6
import argparse
import math
Jingchen Ye's avatar
Jingchen Ye committed
7
import pathlib
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import time

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
from radiance_fields.mlp import VanillaNeRFRadianceField
from utils import render_image, set_random_seed

from nerfacc import ContractionType, OccupancyGrid

if __name__ == "__main__":

    device = "cuda:0"
    set_random_seed(42)

    parser = argparse.ArgumentParser()
Jingchen Ye's avatar
Jingchen Ye committed
26
27
28
29
30
31
    parser.add_argument(
        "--data_root",
        type=str,
        default=str(pathlib.Path.cwd() / "data/nerf_synthetic"),
        help="the root dir of the dataset",
    )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    parser.add_argument(
        "--train_split",
        type=str,
        default="trainval",
        choices=["train", "trainval"],
        help="which train split to use",
    )
    parser.add_argument(
        "--scene",
        type=str,
        default="lego",
        choices=[
            # nerf synthetic
            "chair",
            "drums",
            "ficus",
            "hotdog",
            "lego",
            "materials",
            "mic",
            "ship",
            # mipnerf360 unbounded
            "garden",
        ],
        help="which scene to use",
    )
    parser.add_argument(
        "--aabb",
        type=lambda s: [float(item) for item in s.split(",")],
        default="-1.5,-1.5,-1.5,1.5,1.5,1.5",
        help="delimited list input",
    )
    parser.add_argument(
        "--test_chunk_size",
        type=int,
        default=8192,
    )
    parser.add_argument(
        "--unbounded",
        action="store_true",
        help="whether to use unbounded rendering",
    )
    parser.add_argument("--cone_angle", type=float, default=0.0)
    args = parser.parse_args()

    render_n_samples = 1024

    # setup the scene bounding box.
    if args.unbounded:
        print("Using unbounded rendering")
        contraction_type = ContractionType.UN_BOUNDED_SPHERE
        # contraction_type = ContractionType.UN_BOUNDED_TANH
        scene_aabb = None
        near_plane = 0.2
        far_plane = 1e4
        render_step_size = 1e-2
    else:
        contraction_type = ContractionType.AABB
        scene_aabb = torch.tensor(args.aabb, dtype=torch.float32, device=device)
        near_plane = None
        far_plane = None
        render_step_size = (
            (scene_aabb[3:] - scene_aabb[:3]).max()
            * math.sqrt(3)
            / render_n_samples
        ).item()

    # setup the radiance field we want to train.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
100
    max_steps = 50000
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
101
102
103
104
105
    grad_scaler = torch.cuda.amp.GradScaler(1)
    radiance_field = VanillaNeRFRadianceField().to(device)
    optimizer = torch.optim.Adam(radiance_field.parameters(), lr=5e-4)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
106
107
108
109
110
111
        milestones=[
            max_steps // 2,
            max_steps * 3 // 4,
            max_steps * 5 // 6,
            max_steps * 9 // 10,
        ],
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        gamma=0.33,
    )

    # setup the dataset
    train_dataset_kwargs = {}
    test_dataset_kwargs = {}
    if args.scene == "garden":
        from datasets.nerf_360_v2 import SubjectLoader

        target_sample_batch_size = 1 << 16
        train_dataset_kwargs = {"color_bkgd_aug": "random", "factor": 4}
        test_dataset_kwargs = {"factor": 4}
        grid_resolution = 128
    else:
        from datasets.nerf_synthetic import SubjectLoader

        target_sample_batch_size = 1 << 16
        grid_resolution = 128

    train_dataset = SubjectLoader(
        subject_id=args.scene,
Jingchen Ye's avatar
Jingchen Ye committed
133
        root_fp=args.data_root,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
134
135
136
137
138
139
140
        split=args.train_split,
        num_rays=target_sample_batch_size // render_n_samples,
        **train_dataset_kwargs,
    )

    test_dataset = SubjectLoader(
        subject_id=args.scene,
Jingchen Ye's avatar
Jingchen Ye committed
141
        root_fp=args.data_root,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        split="test",
        num_rays=None,
        **test_dataset_kwargs,
    )

    occupancy_grid = OccupancyGrid(
        roi_aabb=args.aabb,
        resolution=grid_resolution,
        contraction_type=contraction_type,
    ).to(device)

    # training
    step = 0
    tic = time.time()
    for epoch in range(10000000):
        for i in range(len(train_dataset)):
            radiance_field.train()
            data = train_dataset[i]

            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]

            # update occupancy grid
            occupancy_grid.every_n_step(
                step=step,
                occ_eval_fn=lambda x: radiance_field.query_opacity(
                    x, render_step_size
                ),
            )

            # render
            rgb, acc, depth, n_rendering_samples = render_image(
                radiance_field,
                occupancy_grid,
                rays,
                scene_aabb,
                # rendering options
                near_plane=near_plane,
                far_plane=far_plane,
                render_step_size=render_step_size,
                render_bkgd=render_bkgd,
                cone_angle=args.cone_angle,
            )
186
187
            if n_rendering_samples == 0:
                continue
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

            # dynamic batch size for rays to keep sample batch size constant.
            num_rays = len(pixels)
            num_rays = int(
                num_rays
                * (target_sample_batch_size / float(n_rendering_samples))
            )
            train_dataset.update_num_rays(num_rays)
            alive_ray_mask = acc.squeeze(-1) > 0

            # compute loss
            loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])

            optimizer.zero_grad()
            # do not unscale it because we are using Adam.
            grad_scaler.scale(loss).backward()
            optimizer.step()
            scheduler.step()

Ruilong Li's avatar
Ruilong Li committed
207
            if step % 5000 == 0:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
208
209
210
                elapsed_time = time.time() - tic
                loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
                print(
Matthew Tancik's avatar
Matthew Tancik committed
211
                    f"elapsed_time={elapsed_time:.2f}s | step={step} | "
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
212
213
214
215
216
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} |"
                )

Jingchen Ye's avatar
Jingchen Ye committed
217
            if step > 0 and step % max_steps == 0:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
                # evaluation
                radiance_field.eval()

                psnrs = []
                with torch.no_grad():
                    for i in tqdm.tqdm(range(len(test_dataset))):
                        data = test_dataset[i]
                        render_bkgd = data["color_bkgd"]
                        rays = data["rays"]
                        pixels = data["pixels"]

                        # rendering
                        rgb, acc, depth, _ = render_image(
                            radiance_field,
                            occupancy_grid,
                            rays,
                            scene_aabb,
                            # rendering options
                            near_plane=None,
                            far_plane=None,
                            render_step_size=render_step_size,
                            render_bkgd=render_bkgd,
                            cone_angle=args.cone_angle,
                            # test options
                            test_chunk_size=args.test_chunk_size,
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                        # imageio.imwrite(
                        #     "acc_binary_test.png",
                        #     ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8),
                        # )
                        # imageio.imwrite(
                        #     "rgb_test.png",
                        #     (rgb.cpu().numpy() * 255).astype(np.uint8),
                        # )
                        # break
                psnr_avg = sum(psnrs) / len(psnrs)
Matthew Tancik's avatar
Matthew Tancik committed
257
                print(f"evaluation: psnr_avg={psnr_avg}")
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
258
259
260
261
262
263
264
                train_dataset.training = True

            if step == max_steps:
                print("training stops")
                exit()

            step += 1