README.md 7.46 KB
Newer Older
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
1
2
3
4
5
6
7
8
9
10
11
<p>
  <!-- pypi-strip -->
  <picture>
  <source media="(prefers-color-scheme: dark)" srcset="https://user-images.githubusercontent.com/3310961/199083722-881a2372-62c1-4255-8521-31a95a721851.png" />
  <source media="(prefers-color-scheme: light)" srcset="https://user-images.githubusercontent.com/3310961/199084143-0d63eb40-3f35-48d2-a9d5-78d1d60b7d66.png" />
  <!-- /pypi-strip -->
  <img alt="nerfacc logo" src="https://user-images.githubusercontent.com/3310961/199084143-0d63eb40-3f35-48d2-a9d5-78d1d60b7d66.png" width="350px" />
  <!-- pypi-strip -->
  </picture>
  <!-- /pypi-strip -->
</p>
Matthew Tancik's avatar
Matthew Tancik committed
12

Matthew Tancik's avatar
Matthew Tancik committed
13
[![Core Tests.](https://github.com/KAIR-BAIR/nerfacc/actions/workflows/code_checks.yml/badge.svg)](https://github.com/KAIR-BAIR/nerfacc/actions/workflows/code_checks.yml)
14
[![Documentation Status](https://readthedocs.com/projects/plenoptix-nerfacc/badge/?version=latest)](https://www.nerfacc.com/en/latest/?badge=latest)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
15
[![Downloads](https://pepy.tech/badge/nerfacc)](https://pepy.tech/project/nerfacc)
Ruilong Li's avatar
readme  
Ruilong Li committed
16

17
https://www.nerfacc.com/
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
18

Nail Ibrahimli's avatar
Nail Ibrahimli committed
19
NerfAcc is a PyTorch Nerf acceleration toolbox for both training and inference. It focuses on efficient volumetric rendering of radiance fields, which is universal and plug-and-play for most of the NeRFs.
20
21
22

Using NerfAcc, 

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
23
- The `vanilla NeRF` model with 8-layer MLPs can be trained to *better quality* (+~0.5 PNSR)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
24
  in *1 hour* rather than *days* as in the paper.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
25
26
- The `Instant-NGP NeRF` model can be trained to *equal quality* in *4.5 minutes*,
  comparing to the official pure-CUDA implementation.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
27
- The `D-NeRF` model for *dynamic* objects can also be trained in *1 hour*
28
  rather than *2 days* as in the paper, and with *better quality* (+~2.5 PSNR).
29
30
- Both *bounded* and *unbounded* scenes are supported.

Nail Ibrahimli's avatar
Nail Ibrahimli committed
31
**And it is a pure Python interface with flexible APIs!**
Ruilong Li's avatar
readme  
Ruilong Li committed
32

33
34
## Installation

35
The easist way is to install from PyPI, and it will build itself on the first run.
36
37
38
39
```
pip install nerfacc
```

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
We also provide pre-built wheels covering major combinations of Pytorch + CUDA supported by [official Pytorch](https://pytorch.org/get-started/previous-versions/).

```
# e.g., Windows & Linux, torch 1.13.0 + cu117
pip install nerfacc -f https://nerfacc-bucket.s3.us-west-2.amazonaws.com/whl/torch-1.13.0_cu117.html
```

|              | `cu102` | `cu113` | `cu116` | `cu117` |
|--------------|---------|---------|---------|---------|
| torch 1.10.0 | ✅      | ✅      |         |         |
| torch 1.11.0 | ✅*     | ✅      |         |         |
| torch 1.12.0 | ✅*     | ✅      | ✅      |         |
| torch 1.13.0 |         |         | ✅      | ✅      |

\* Pytorch does not support Windows pre-built wheels for those combinations thus we do not support as well.

56
57
## Usage

Nail Ibrahimli's avatar
Nail Ibrahimli committed
58
The idea of NerfAcc is to perform efficient ray marching and volumetric rendering. So NerfAcc can work with any user-defined radiance field. To plug the NerfAcc rendering pipeline into your code and enjoy the acceleration, you only need to define two functions with your radiance field.
59
60
61
- `sigma_fn`: Compute density at each sample. It will be used by `nerfacc.ray_marching()` to skip the empty and occluded space during ray marching, which is where the major speedup comes from. 
- `rgb_sigma_fn`: Compute color and density at each sample. It will be used by `nerfacc.rendering()` to conduct differentiable volumetric rendering. This function will receive gradients to update your network.

Nail Ibrahimli's avatar
Nail Ibrahimli committed
62
A simple example is like this:
63
64
65
66
67
68
69
70
71

``` python
import torch
from torch import Tensor
import nerfacc 

radiance_field = ...  # network: a NeRF model
rays_o: Tensor = ...  # ray origins. (n_rays, 3)
rays_d: Tensor = ...  # ray normalized directions. (n_rays, 3)
72
optimizer = ...  # optimizer
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

def sigma_fn(
    t_starts: Tensor, t_ends:Tensor, ray_indices: Tensor
) -> Tensor:
    """ Query density values from a user-defined radiance field.
    :params t_starts: Start of the sample interval along the ray. (n_samples, 1).
    :params t_ends: End of the sample interval along the ray. (n_samples, 1).
    :params ray_indices: Ray indices that each sample belongs to. (n_samples,).
    :returns The post-activation density values. (n_samples, 1).
    """
    t_origins = rays_o[ray_indices]  # (n_samples, 3)
    t_dirs = rays_d[ray_indices]  # (n_samples, 3)
    positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0
    sigmas = radiance_field.query_density(positions) 
    return sigmas  # (n_samples, 1)

def rgb_sigma_fn(
    t_starts: Tensor, t_ends: Tensor, ray_indices: Tensor
) -> Tuple[Tensor, Tensor]:
    """ Query rgb and density values from a user-defined radiance field.
    :params t_starts: Start of the sample interval along the ray. (n_samples, 1).
    :params t_ends: End of the sample interval along the ray. (n_samples, 1).
    :params ray_indices: Ray indices that each sample belongs to. (n_samples,).
    :returns The post-activation rgb and density values. 
        (n_samples, 3), (n_samples, 1).
    """
    t_origins = rays_o[ray_indices]  # (n_samples, 3)
    t_dirs = rays_d[ray_indices]  # (n_samples, 3)
    positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0
    rgbs, sigmas = radiance_field(positions, condition=t_dirs)  
    return rgbs, sigmas  # (n_samples, 3), (n_samples, 1)

# Efficient Raymarching: Skip empty and occluded space, pack samples from all rays.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
106
# ray_indices: (n_samples,). t_starts: (n_samples, 1). t_ends: (n_samples, 1).
107
with torch.no_grad():
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
108
    ray_indices, t_starts, t_ends = nerfacc.ray_marching(
109
110
111
        rays_o, rays_d, sigma_fn=sigma_fn, near_plane=0.2, far_plane=1.0, 
        early_stop_eps=1e-4, alpha_thre=1e-2, 
    )
112
113
114

# Differentiable Volumetric Rendering.
# colors: (n_rays, 3). opaicity: (n_rays, 1). depth: (n_rays, 1).
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
115
116
117
color, opacity, depth = nerfacc.rendering(
    t_starts, t_ends, ray_indices, n_rays=rays_o.shape[0], rgb_sigma_fn=rgb_sigma_fn
)
118

119
# Optimize: Both the network and rays will receive gradients
120
121
122
123
124
125
optimizer.zero_grad()
loss = F.mse_loss(color, color_gt)
loss.backward()
optimizer.step()
```

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
126
## Examples: 
Ruilong Li's avatar
readme  
Ruilong Li committed
127

Nail Ibrahimli's avatar
Nail Ibrahimli committed
128
Before running those example scripts, please check the script about which dataset it is needed, and download the dataset first.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
129

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
130
```bash
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
131
132
# clone the repo with submodules.
git clone --recursive git://github.com/KAIR-BAIR/nerfacc/
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
133
```
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
134

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
135
``` bash
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
136
# Instant-NGP NeRF in 4.5 minutes with reproduced performance!
137
# See results at here: https://www.nerfacc.com/en/latest/examples/ngp.html
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
138
python examples/train_ngp_nerf.py --train_split train --scene lego
Ruilong Li's avatar
readme  
Ruilong Li committed
139
140
```

Ruilong Li's avatar
Ruilong Li committed
141
``` bash
142
# Vanilla MLP NeRF in 1 hour with better performance!
143
# See results at here: https://www.nerfacc.com/en/latest/examples/vanilla.html
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
144
python examples/train_mlp_nerf.py --train_split train --scene lego
Ruilong Li's avatar
Ruilong Li committed
145
146
```

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
147
```bash
148
# D-NeRF for Dynamic objects in 1 hour with better performance!
149
# See results at here: https://www.nerfacc.com/en/latest/examples/dnerf.html
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
150
python examples/train_mlp_dnerf.py --train_split train --scene lego
151
152
```

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
153
```bash
154
# Instant-NGP on unbounded scenes in 20 minutes!
155
# See results at here: https://www.nerfacc.com/en/latest/examples/unbounded.html
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
156
python examples/train_ngp_nerf.py --train_split train --scene garden --auto_aabb --unbounded --cone_angle=0.004
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
157
```
158

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
159
160
161
162
Used by:
- [nerfstudio](https://github.com/nerfstudio-project/nerfstudio): A collaboration friendly studio for NeRFs.
- [instant-nsr-pl](https://github.com/bennyguo/instant-nsr-pl): NeuS in 10 minutes.

163

164
165
166
167
168
169
170
## Build Status

We 

#### Linux & Windows


171
172
173
174
175
176
177
178
179
## Citation

```bibtex
@article{li2022nerfacc,
  title={NerfAcc: A General NeRF Accleration Toolbox.},
  author={Li, Ruilong and Tancik, Matthew and Kanazawa, Angjoo},
  journal={arXiv preprint arXiv:2210.04847},
  year={2022}
}
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
180
```