README.md 6.42 KB
Newer Older
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
1
2
3
4
5
6
7
8
9
10
11
<p>
  <!-- pypi-strip -->
  <picture>
  <source media="(prefers-color-scheme: dark)" srcset="https://user-images.githubusercontent.com/3310961/199083722-881a2372-62c1-4255-8521-31a95a721851.png" />
  <source media="(prefers-color-scheme: light)" srcset="https://user-images.githubusercontent.com/3310961/199084143-0d63eb40-3f35-48d2-a9d5-78d1d60b7d66.png" />
  <!-- /pypi-strip -->
  <img alt="nerfacc logo" src="https://user-images.githubusercontent.com/3310961/199084143-0d63eb40-3f35-48d2-a9d5-78d1d60b7d66.png" width="350px" />
  <!-- pypi-strip -->
  </picture>
  <!-- /pypi-strip -->
</p>
Matthew Tancik's avatar
Matthew Tancik committed
12

Matthew Tancik's avatar
Matthew Tancik committed
13
[![Core Tests.](https://github.com/KAIR-BAIR/nerfacc/actions/workflows/code_checks.yml/badge.svg)](https://github.com/KAIR-BAIR/nerfacc/actions/workflows/code_checks.yml)
14
[![Documentation Status](https://readthedocs.com/projects/plenoptix-nerfacc/badge/?version=latest)](https://www.nerfacc.com/en/latest/?badge=latest)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
15
[![Downloads](https://pepy.tech/badge/nerfacc)](https://pepy.tech/project/nerfacc)
Ruilong Li's avatar
readme  
Ruilong Li committed
16

17
https://www.nerfacc.com/
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
18

19
20
21
22
23
NerfAcc is a PyTorch Nerf acceleration toolbox for both training and inference. It focus on
efficient volumetric rendering of radiance fields, which is universal and plug-and-play for most of the NeRFs.

Using NerfAcc, 

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
24
- The `vanilla NeRF` model with 8-layer MLPs can be trained to *better quality* (+~0.5 PNSR)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
25
  in *1 hour* rather than *days* as in the paper.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
26
27
- The `Instant-NGP NeRF` model can be trained to *equal quality* in *4.5 minutes*,
  comparing to the official pure-CUDA implementation.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
28
- The `D-NeRF` model for *dynamic* objects can also be trained in *1 hour*
29
  rather than *2 days* as in the paper, and with *better quality* (+~2.5 PSNR).
30
31
32
- Both *bounded* and *unbounded* scenes are supported.

**And it is pure Python interface with flexible APIs!**
Ruilong Li's avatar
readme  
Ruilong Li committed
33

34
35
36
37
38
39
## Installation

```
pip install nerfacc
```

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
## Usage

The idea of NerfAcc is to perform efficient ray marching and volumetric rendering. So NerfAcc can work with any user-defined radiance field. To plug the NerfAcc rendering pipeline into your code and enjoy the acceleration, you only need to define two functions with your radience field.
- `sigma_fn`: Compute density at each sample. It will be used by `nerfacc.ray_marching()` to skip the empty and occluded space during ray marching, which is where the major speedup comes from. 
- `rgb_sigma_fn`: Compute color and density at each sample. It will be used by `nerfacc.rendering()` to conduct differentiable volumetric rendering. This function will receive gradients to update your network.

An simple example is like this:

``` python
import torch
from torch import Tensor
import nerfacc 

radiance_field = ...  # network: a NeRF model
rays_o: Tensor = ...  # ray origins. (n_rays, 3)
rays_d: Tensor = ...  # ray normalized directions. (n_rays, 3)
56
optimizer = ...  # optimizer
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

def sigma_fn(
    t_starts: Tensor, t_ends:Tensor, ray_indices: Tensor
) -> Tensor:
    """ Query density values from a user-defined radiance field.
    :params t_starts: Start of the sample interval along the ray. (n_samples, 1).
    :params t_ends: End of the sample interval along the ray. (n_samples, 1).
    :params ray_indices: Ray indices that each sample belongs to. (n_samples,).
    :returns The post-activation density values. (n_samples, 1).
    """
    t_origins = rays_o[ray_indices]  # (n_samples, 3)
    t_dirs = rays_d[ray_indices]  # (n_samples, 3)
    positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0
    sigmas = radiance_field.query_density(positions) 
    return sigmas  # (n_samples, 1)

def rgb_sigma_fn(
    t_starts: Tensor, t_ends: Tensor, ray_indices: Tensor
) -> Tuple[Tensor, Tensor]:
    """ Query rgb and density values from a user-defined radiance field.
    :params t_starts: Start of the sample interval along the ray. (n_samples, 1).
    :params t_ends: End of the sample interval along the ray. (n_samples, 1).
    :params ray_indices: Ray indices that each sample belongs to. (n_samples,).
    :returns The post-activation rgb and density values. 
        (n_samples, 3), (n_samples, 1).
    """
    t_origins = rays_o[ray_indices]  # (n_samples, 3)
    t_dirs = rays_d[ray_indices]  # (n_samples, 3)
    positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0
    rgbs, sigmas = radiance_field(positions, condition=t_dirs)  
    return rgbs, sigmas  # (n_samples, 3), (n_samples, 1)

# Efficient Raymarching: Skip empty and occluded space, pack samples from all rays.
# packed_info: (n_rays, 2). t_starts: (n_samples, 1). t_ends: (n_samples, 1).
91
92
93
94
95
with torch.no_grad():
    packed_info, t_starts, t_ends = nerfacc.ray_marching(
        rays_o, rays_d, sigma_fn=sigma_fn, near_plane=0.2, far_plane=1.0, 
        early_stop_eps=1e-4, alpha_thre=1e-2, 
    )
96
97
98
99
100

# Differentiable Volumetric Rendering.
# colors: (n_rays, 3). opaicity: (n_rays, 1). depth: (n_rays, 1).
color, opacity, depth = nerfacc.rendering(rgb_sigma_fn, packed_info, t_starts, t_ends)

101
# Optimize: Both the network and rays will receive gradients
102
103
104
105
106
107
optimizer.zero_grad()
loss = F.mse_loss(color, color_gt)
loss.backward()
optimizer.step()
```

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
108
## Examples: 
Ruilong Li's avatar
readme  
Ruilong Li committed
109

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
110
Before running those example scripts, please check the script about which dataset it is needed, and download
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
111
112
the dataset first.

Ruilong Li's avatar
Ruilong Li committed
113
``` bash
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
114
# Instant-NGP NeRF in 4.5 minutes with reproduced performance!
115
# See results at here: https://www.nerfacc.com/en/latest/examples/ngp.html
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
116
python examples/train_ngp_nerf.py --train_split train --scene lego
Ruilong Li's avatar
readme  
Ruilong Li committed
117
118
```

Ruilong Li's avatar
Ruilong Li committed
119
``` bash
120
# Vanilla MLP NeRF in 1 hour with better performance!
121
# See results at here: https://www.nerfacc.com/en/latest/examples/vanilla.html
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
122
python examples/train_mlp_nerf.py --train_split train --scene lego
Ruilong Li's avatar
Ruilong Li committed
123
124
```

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
125
```bash
126
# D-NeRF for Dynamic objects in 1 hour with better performance!
127
# See results at here: https://www.nerfacc.com/en/latest/examples/dnerf.html
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
128
python examples/train_mlp_dnerf.py --train_split train --scene lego
129
130
```

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
131
```bash
132
# Instant-NGP on unbounded scenes in 20 minutes!
133
# See results at here: https://www.nerfacc.com/en/latest/examples/unbounded.html
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
134
python examples/train_ngp_nerf.py --train_split train --scene garden --auto_aabb --unbounded --cone_angle=0.004
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
135
```
136

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
137
138
139
140
Used by:
- [nerfstudio](https://github.com/nerfstudio-project/nerfstudio): A collaboration friendly studio for NeRFs.
- [instant-nsr-pl](https://github.com/bennyguo/instant-nsr-pl): NeuS in 10 minutes.

141
142
143
144
145
146
147
148
149
150

## Citation

```bibtex
@article{li2022nerfacc,
  title={NerfAcc: A General NeRF Accleration Toolbox.},
  author={Li, Ruilong and Tancik, Matthew and Kanazawa, Angjoo},
  journal={arXiv preprint arXiv:2210.04847},
  year={2022}
}
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
151
```