Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
f1a0211e
"tests/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "d6fa3298fa14db874b71b3fc5ebcefae99e15f45"
Commit
f1a0211e
authored
May 06, 2020
by
liyinhao
Browse files
change seed and names
parent
60371607
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
31 additions
and
35 deletions
+31
-35
mmdet3d/datasets/pipelines/indoor_sample.py
mmdet3d/datasets/pipelines/indoor_sample.py
+9
-12
tests/test_indoor_sample.py
tests/test_indoor_sample.py
+22
-23
No files found.
mmdet3d/datasets/pipelines/indoor_sample.py
View file @
f1a0211e
...
@@ -21,8 +21,7 @@ class PointSample(object):
...
@@ -21,8 +21,7 @@ class PointSample(object):
points
,
points
,
num_samples
,
num_samples
,
replace
=
None
,
replace
=
None
,
return_choices
=
False
,
return_choices
=
False
):
seed
=
None
):
"""Points Random Sampling.
"""Points Random Sampling.
Sample points to a certain number.
Sample points to a certain number.
...
@@ -37,8 +36,6 @@ class PointSample(object):
...
@@ -37,8 +36,6 @@ class PointSample(object):
points (ndarray): 3D Points.
points (ndarray): 3D Points.
choices (ndarray): The generated random samples
choices (ndarray): The generated random samples
"""
"""
if
seed
is
not
None
:
np
.
random
.
seed
(
seed
)
if
replace
is
None
:
if
replace
is
None
:
replace
=
(
points
.
shape
[
0
]
<
num_samples
)
replace
=
(
points
.
shape
[
0
]
<
num_samples
)
choices
=
np
.
random
.
choice
(
choices
=
np
.
random
.
choice
(
...
@@ -49,21 +46,21 @@ class PointSample(object):
...
@@ -49,21 +46,21 @@ class PointSample(object):
return
points
[
choices
]
return
points
[
choices
]
def
__call__
(
self
,
results
,
seed
=
None
):
def
__call__
(
self
,
results
,
seed
=
None
):
point
_cloud
=
results
.
get
(
'point
_cloud
'
,
None
)
point
s
=
results
.
get
(
'point
s
'
,
None
)
p
cl
_color
=
results
.
get
(
'p
cl
_color'
,
None
)
p
ts
_color
=
results
.
get
(
'p
ts
_color'
,
None
)
point
_cloud
,
choices
=
self
.
points_random_sampling
(
point
s
,
choices
=
self
.
points_random_sampling
(
point
_cloud
,
self
.
num_points
,
return_choices
=
True
,
seed
=
seed
)
point
s
,
self
.
num_points
,
return_choices
=
True
)
results
[
'point
_cloud
'
]
=
point
_cloud
results
[
'point
s
'
]
=
point
s
if
p
cl
_color
is
not
None
:
if
p
ts
_color
is
not
None
:
p
cl
_color
=
p
cl
_color
[
choices
]
p
ts
_color
=
p
ts
_color
[
choices
]
instance_labels
=
results
.
get
(
'instance_labels'
,
None
)
instance_labels
=
results
.
get
(
'instance_labels'
,
None
)
semantic_labels
=
results
.
get
(
'semantic_labels'
,
None
)
semantic_labels
=
results
.
get
(
'semantic_labels'
,
None
)
instance_labels
=
instance_labels
[
choices
]
instance_labels
=
instance_labels
[
choices
]
semantic_labels
=
semantic_labels
[
choices
]
semantic_labels
=
semantic_labels
[
choices
]
results
[
'instance_labels'
]
=
instance_labels
results
[
'instance_labels'
]
=
instance_labels
results
[
'semantic_labels'
]
=
semantic_labels
results
[
'semantic_labels'
]
=
semantic_labels
results
[
'p
cl
_color'
]
=
p
cl
_color
results
[
'p
ts
_color'
]
=
p
ts
_color
return
results
return
results
...
...
tests/test_indoor_sample.py
View file @
f1a0211e
...
@@ -4,48 +4,48 @@ from mmdet3d.datasets.pipelines.indoor_sample import PointSample
...
@@ -4,48 +4,48 @@ from mmdet3d.datasets.pipelines.indoor_sample import PointSample
def
test_indoor_sample
():
def
test_indoor_sample
():
np
.
random
.
seed
(
0
)
scannet_sample_points
=
PointSample
(
5
)
scannet_sample_points
=
PointSample
(
5
)
scannet_results
=
dict
()
scannet_results
=
dict
()
scannet_point_cloud
=
np
.
array
(
scannet_points
=
np
.
array
([[
1.0719866
,
-
0.7870435
,
0.8408122
,
0.9196809
],
[[
1.0719866
,
-
0.7870435
,
0.8408122
,
0.9196809
],
[
1.103661
,
0.81065744
,
2.6616862
,
2.7405548
],
[
1.103661
,
0.81065744
,
2.6616862
,
2.7405548
],
[
1.0276475
,
1.5061463
,
2.6174362
,
2.6963048
],
[
1.0276475
,
1.5061463
,
2.6174362
,
2.6963048
],
[
-
0.9709588
,
0.6750515
,
0.93901765
,
1.0178864
],
[
-
0.9709588
,
0.6750515
,
0.93901765
,
1.0178864
],
[
1.0578915
,
1.1693821
,
0.87503505
,
0.95390373
],
[
1.0578915
,
1.1693821
,
0.87503505
,
0.95390373
],
[
0.05560996
,
-
1.5688863
,
1.2440368
,
1.3229055
],
[
0.05560996
,
-
1.5688863
,
1.2440368
,
1.3229055
],
[
-
0.15731563
,
-
1.7735453
,
2.7535574
,
2.832426
],
[
-
0.15731563
,
-
1.7735453
,
2.7535574
,
2.832426
],
[
1.1188195
,
-
0.99211365
,
2.5551798
,
2.6340485
],
[
1.1188195
,
-
0.99211365
,
2.5551798
,
2.6340485
],
[
-
0.9186557
,
-
1.7041215
,
2.0562649
,
2.1351335
],
[
-
0.9186557
,
-
1.7041215
,
2.0562649
,
2.1351335
],
[
-
1.0128691
,
-
1.3394243
,
0.040936
,
0.1198047
]])
[
-
1.0128691
,
-
1.3394243
,
0.040936
,
0.1198047
]])
scannet_results
[
'points'
]
=
scannet_points
scannet_results
[
'point_cloud'
]
=
scannet_point_cloud
scannet_instance_labels
=
np
.
array
([
15
,
12
,
11
,
38
,
0
,
18
,
17
,
12
,
17
,
0
])
scannet_instance_labels
=
np
.
array
([
15
,
12
,
11
,
38
,
0
,
18
,
17
,
12
,
17
,
0
])
scannet_results
[
'instance_labels'
]
=
scannet_instance_labels
scannet_results
[
'instance_labels'
]
=
scannet_instance_labels
scannet_p
cl
_color
=
np
.
array
([[
77.
,
74.
,
63.
],
[
176.
,
166.
,
156.
],
scannet_p
ts
_color
=
np
.
array
([[
77.
,
74.
,
63.
],
[
176.
,
166.
,
156.
],
[
178.
,
164.
,
153.
],
[
240.
,
235.
,
237.
],
[
178.
,
164.
,
153.
],
[
240.
,
235.
,
237.
],
[
58.
,
58.
,
59.
],
[
245.
,
236.
,
229.
],
[
58.
,
58.
,
59.
],
[
245.
,
236.
,
229.
],
[
158.
,
148.
,
141.
],
[
195.
,
184.
,
178.
],
[
158.
,
148.
,
141.
],
[
195.
,
184.
,
178.
],
[
193.
,
181.
,
174.
],
[
105.
,
102.
,
97.
]])
[
193.
,
181.
,
174.
],
[
105.
,
102.
,
97.
]])
scannet_results
[
'p
cl
_color'
]
=
scannet_p
cl
_color
scannet_results
[
'p
ts
_color'
]
=
scannet_p
ts
_color
scannet_semantic_labels
=
np
.
array
([
38
,
1
,
1
,
40
,
0
,
40
,
1
,
1
,
1
,
0
])
scannet_semantic_labels
=
np
.
array
([
38
,
1
,
1
,
40
,
0
,
40
,
1
,
1
,
1
,
0
])
scannet_results
[
'semantic_labels'
]
=
scannet_semantic_labels
scannet_results
[
'semantic_labels'
]
=
scannet_semantic_labels
scannet_results
=
scannet_sample_points
(
scannet_results
,
0
)
scannet_results
=
scannet_sample_points
(
scannet_results
,
0
)
scannet_point_cloud_result
=
scannet_results
.
get
(
'point
_cloud
'
,
None
)
scannet_point_cloud_result
=
scannet_results
.
get
(
'point
s
'
,
None
)
scannet_pcl_color_result
=
scannet_results
.
get
(
'p
cl
_color'
,
None
)
scannet_pcl_color_result
=
scannet_results
.
get
(
'p
ts
_color'
,
None
)
scannet_instance_labels_result
=
scannet_results
.
get
(
scannet_instance_labels_result
=
scannet_results
.
get
(
'instance_labels'
,
None
)
'instance_labels'
,
None
)
scannet_semantic_labels_result
=
scannet_results
.
get
(
scannet_semantic_labels_result
=
scannet_results
.
get
(
'semantic_labels'
,
None
)
'semantic_labels'
,
None
)
scannet_choices
=
np
.
array
([
2
,
8
,
4
,
9
,
1
])
scannet_choices
=
np
.
array
([
2
,
8
,
4
,
9
,
1
])
assert
np
.
allclose
(
scannet_point
_cloud
[
scannet_choices
],
assert
np
.
allclose
(
scannet_point
s
[
scannet_choices
],
scannet_point_cloud_result
)
scannet_point_cloud_result
)
assert
np
.
allclose
(
scannet_p
cl
_color
[
scannet_choices
],
assert
np
.
allclose
(
scannet_p
ts
_color
[
scannet_choices
],
scannet_pcl_color_result
)
scannet_pcl_color_result
)
assert
np
.
all
(
scannet_instance_labels
[
scannet_choices
]
==
assert
np
.
all
(
scannet_instance_labels
[
scannet_choices
]
==
scannet_instance_labels_result
)
scannet_instance_labels_result
)
assert
np
.
all
(
scannet_semantic_labels
[
scannet_choices
]
==
assert
np
.
all
(
scannet_semantic_labels
[
scannet_choices
]
==
scannet_semantic_labels_result
)
scannet_semantic_labels_result
)
np
.
random
.
seed
(
0
)
sunrgbd_sample_points
=
PointSample
(
5
)
sunrgbd_sample_points
=
PointSample
(
5
)
sunrgbd_results
=
dict
()
sunrgbd_results
=
dict
()
sunrgbd_point_cloud
=
np
.
array
(
sunrgbd_point_cloud
=
np
.
array
(
...
@@ -59,10 +59,9 @@ def test_indoor_sample():
...
@@ -59,10 +59,9 @@ def test_indoor_sample():
[
-
0.74624217
,
1.5244724
,
-
0.8678476
,
0.41810507
],
[
-
0.74624217
,
1.5244724
,
-
0.8678476
,
0.41810507
],
[
0.56485355
,
1.5747732
,
-
0.804522
,
0.4814307
],
[
0.56485355
,
1.5747732
,
-
0.804522
,
0.4814307
],
[
-
0.0913099
,
1.3673826
,
-
1.2800645
,
0.00588822
]])
[
-
0.0913099
,
1.3673826
,
-
1.2800645
,
0.00588822
]])
sunrgbd_results
[
'point_cloud'
]
=
sunrgbd_point_cloud
sunrgbd_results
[
'points'
]
=
sunrgbd_point_cloud
sunrgbd_results
=
sunrgbd_sample_points
(
sunrgbd_results
,
0
)
sunrgbd_results
=
sunrgbd_sample_points
(
sunrgbd_results
,
0
)
sunrgbd_choices
=
np
.
array
([
2
,
8
,
4
,
9
,
1
])
sunrgbd_choices
=
np
.
array
([
2
,
8
,
4
,
9
,
1
])
sunrgbd_point
_cloud
_result
=
sunrgbd_results
.
get
(
'point
_cloud
'
,
None
)
sunrgbd_point
s
_result
=
sunrgbd_results
.
get
(
'point
s
'
,
None
)
assert
np
.
allclose
(
sunrgbd_point_cloud
[
sunrgbd_choices
],
assert
np
.
allclose
(
sunrgbd_point_cloud
[
sunrgbd_choices
],
sunrgbd_point
_cloud
_result
)
sunrgbd_point
s
_result
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment