Commit 60371607 authored by liyinhao's avatar liyinhao
Browse files

add seed and more data for test unit, change indoor sample

parent 60e3958e
......@@ -3,33 +3,6 @@ import numpy as np
from mmdet.datasets.registry import PIPELINES
def points_random_sampling(points,
num_samples,
replace=None,
return_choices=False):
"""Points Random Sampling.
Sample points to a certain number.
Args:
points (ndarray): 3D Points.
num_samples (int): Number of samples to be sampled.
replace (bool): Whether the sample is with or without replacement.
return_choices (bool): Whether return choice.
Returns:
points (ndarray): 3D Points.
choices (ndarray): The generated random samples
"""
if replace is None:
replace = (points.shape[0] < num_samples)
choices = np.random.choice(points.shape[0], num_samples, replace=replace)
if return_choices:
return points[choices], choices
else:
return points[choices]
@PIPELINES.register_module
class PointSample(object):
"""Point Sample.
......@@ -41,19 +14,48 @@ class PointSample(object):
num_points (int): Number of points to be sampled.
"""
def __init__(self, name, num_points):
assert name in ['scannet', 'sunrgbd']
self.name = name
def __init__(self, num_points):
self.num_points = num_points
def __call__(self, results):
points = results.get('points', None)
def points_random_sampling(self,
points,
num_samples,
replace=None,
return_choices=False,
seed=None):
"""Points Random Sampling.
Sample points to a certain number.
Args:
points (ndarray): 3D Points.
num_samples (int): Number of samples to be sampled.
replace (bool): Whether the sample is with or without replacement.
return_choices (bool): Whether return choice.
Returns:
points (ndarray): 3D Points.
choices (ndarray): The generated random samples
"""
if seed is not None:
np.random.seed(seed)
if replace is None:
replace = (points.shape[0] < num_samples)
choices = np.random.choice(
points.shape[0], num_samples, replace=replace)
if return_choices:
return points[choices], choices
else:
return points[choices]
def __call__(self, results, seed=None):
point_cloud = results.get('point_cloud', None)
pcl_color = results.get('pcl_color', None)
points, choices = points_random_sampling(
points, self.num_points, return_choices=True)
results['points'] = points
point_cloud, choices = self.points_random_sampling(
point_cloud, self.num_points, return_choices=True, seed=seed)
results['point_cloud'] = point_cloud
if self.name == 'scannet':
if pcl_color is not None:
pcl_color = pcl_color[choices]
instance_labels = results.get('instance_labels', None)
semantic_labels = results.get('semantic_labels', None)
......@@ -67,6 +69,5 @@ class PointSample(object):
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += '(dataset_name={})'.format(self.name)
repr_str += '(num_points={})'.format(self.num_points)
return repr_str
......@@ -4,35 +4,65 @@ from mmdet3d.datasets.pipelines.indoor_sample import PointSample
def test_indoor_sample():
scannet_sample_points = PointSample('scannet', 1)
scannet_sample_points = PointSample(5)
scannet_results = dict()
scannet_results['points'] = np.array(
[[1.6110241e+00, -1.6903955e-01, 5.8115810e-01, 5.9897250e-01],
[1.3978075e+00, 4.2035791e-01, 3.8729519e-01, 4.0510958e-01]])
scannet_results['instance_labels'] = np.array([9, 3])
scannet_results['pcl_color'] = np.array([[29.0, 142.0, 122.0],
[21., 17., 16.]])
scannet_results['semantic_labels'] = np.array([1, 5])
scannet_point_cloud = np.array(
[[1.0719866, -0.7870435, 0.8408122, 0.9196809],
[1.103661, 0.81065744, 2.6616862, 2.7405548],
[1.0276475, 1.5061463, 2.6174362, 2.6963048],
[-0.9709588, 0.6750515, 0.93901765, 1.0178864],
[1.0578915, 1.1693821, 0.87503505, 0.95390373],
[0.05560996, -1.5688863, 1.2440368, 1.3229055],
[-0.15731563, -1.7735453, 2.7535574, 2.832426],
[1.1188195, -0.99211365, 2.5551798, 2.6340485],
[-0.9186557, -1.7041215, 2.0562649, 2.1351335],
[-1.0128691, -1.3394243, 0.040936, 0.1198047]])
scannet_results['point_cloud'] = scannet_point_cloud
scannet_instance_labels = np.array([15, 12, 11, 38, 0, 18, 17, 12, 17, 0])
scannet_results['instance_labels'] = scannet_instance_labels
scannet_pcl_color = np.array([[77., 74., 63.], [176., 166., 156.],
[178., 164., 153.], [240., 235., 237.],
[58., 58., 59.], [245., 236., 229.],
[158., 148., 141.], [195., 184., 178.],
[193., 181., 174.], [105., 102., 97.]])
scannet_results['pcl_color'] = scannet_pcl_color
scannet_semantic_labels = np.array([38, 1, 1, 40, 0, 40, 1, 1, 1, 0])
scannet_results['semantic_labels'] = scannet_semantic_labels
scannet_results = scannet_sample_points(scannet_results)
points = scannet_results.get('points', None)
pcl_color = scannet_results.get('pcl_color', None)
instance_labels = scannet_results.get('instance_labels', None)
semantic_labels = scannet_results.get('semantic_labels', None)
assert points.shape == (1, 4)
assert pcl_color.shape == (1, 3)
assert instance_labels.shape == (1, )
assert semantic_labels.shape == (1, )
scannet_results = scannet_sample_points(scannet_results, 0)
scannet_point_cloud_result = scannet_results.get('point_cloud', None)
scannet_pcl_color_result = scannet_results.get('pcl_color', None)
scannet_instance_labels_result = scannet_results.get(
'instance_labels', None)
scannet_semantic_labels_result = scannet_results.get(
'semantic_labels', None)
scannet_choices = np.array([2, 8, 4, 9, 1])
assert np.allclose(scannet_point_cloud[scannet_choices],
scannet_point_cloud_result)
assert np.allclose(scannet_pcl_color[scannet_choices],
scannet_pcl_color_result)
assert np.all(scannet_instance_labels[scannet_choices] ==
scannet_instance_labels_result)
assert np.all(scannet_semantic_labels[scannet_choices] ==
scannet_semantic_labels_result)
sunrgbd_sample_points = PointSample('sunrgbd', 1)
sunrgbd_sample_points = PointSample(5)
sunrgbd_results = dict()
sunrgbd_results['points'] = np.array(
[[1.2113925, 2.8755326, -1.1801991, 0.01056887],
[3.6554186, 4.5093756, 0.33279705, 1.523565]])
sunrgbd_point_cloud = np.array(
[[-1.8135729e-01, 1.4695230e+00, -1.2780589e+00, 7.8938007e-03],
[1.2581362e-03, 2.0561588e+00, -1.0341064e+00, 2.5184631e-01],
[6.8236995e-01, 3.3611867e+00, -9.2599887e-01, 3.5995382e-01],
[-2.9432583e-01, 1.8714852e+00, -9.0929651e-01, 3.7665617e-01],
[-0.5024875, 1.8032674, -1.1403012, 0.14565146],
[-0.520559, 1.6324949, -0.9896099, 0.2963428],
[0.95929825, 2.9402404, -0.8746674, 0.41128528],
[-0.74624217, 1.5244724, -0.8678476, 0.41810507],
[0.56485355, 1.5747732, -0.804522, 0.4814307],
[-0.0913099, 1.3673826, -1.2800645, 0.00588822]])
sunrgbd_results['point_cloud'] = sunrgbd_point_cloud
sunrgbd_results = sunrgbd_sample_points(sunrgbd_results)
point_cloud = sunrgbd_results.get('points', None)
assert point_cloud.shape == (1, 4)
test_indoor_sample()
sunrgbd_results = sunrgbd_sample_points(sunrgbd_results, 0)
sunrgbd_choices = np.array([2, 8, 4, 9, 1])
sunrgbd_point_cloud_result = sunrgbd_results.get('point_cloud', None)
assert np.allclose(sunrgbd_point_cloud[sunrgbd_choices],
sunrgbd_point_cloud_result)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment