Unverified Commit d7067e44 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

Bump version to v1.1.0rc2

Bump to v1.1.0rc2
parents 28fe73d2 fb0e57e5
Collections:
- Name: FCAF3D
Metadata:
Training Techniques:
- AdamW
Training Resources: 2x V100 GPUs
Architecture:
- MinkResNet
Paper:
URL: https://arxiv.org/abs/2112.00322
Title: 'FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection'
README: configs/fcaf3d/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/detectors/mink_single_stage.py#L15
Version: v1.0.0rc4
Models:
- Name: fcaf3d_2xb8_scannet-3d-18class
In Collection: FCAF3D
Config: configs/fcaf3d/fcaf3d_2xb8_scannet-3d-18class.py
Metadata:
Training Data: ScanNet
Training Memory (GB): 10.7
Results:
- Task: 3D Object Detection
Dataset: ScanNet
Metrics:
AP@0.25: 69.7
AP@0.5: 55.2
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_scannet-3d-18class/fcaf3d_8x2_scannet-3d-18class_20220805_084956.pth
- Name: fcaf3d_2xb8_sunrgbd-3d-10class
In Collection: FCAF3D
Config: configs/fcaf3d/fcaf3d_2xb8_sunrgbd-3d-10class.py
Metadata:
Training Data: SUNRGBD
Training Memory (GB): 6.5
Results:
- Task: 3D Object Detection
Dataset: SUNRGBD
Metrics:
AP@0.25: 63.76
AP@0.5: 47.31
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_sunrgbd-3d-10class/fcaf3d_8x2_sunrgbd-3d-10class_20220805_165017.pth
- Name: fcaf3d_2xb8_s3dis-3d-5class
In Collection: FCAF3D
Config: configs/fcaf3d/fcaf3d_2xb8_s3dis-3d-5class.py
Metadata:
Training Data: S3DIS
Training Memory (GB): 23.5
Results:
- Task: 3D Object Detection
Dataset: S3DIS
Metrics:
AP@0.25: 67.36
AP@0.5: 45.74
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_s3dis-3d-5class/fcaf3d_8x2_s3dis-3d-5class_20220805_121957.pth
......@@ -52,7 +52,7 @@ We also provide visualization functions to show the monocular 3D detection resul
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :-------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :--: | :--: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| \[ResNet101 w/ DCN\](./fcos3d_r101-caffe- fpn-head-gn-dcn_8xb2-1x_nus-mono3d.py) | 1x | 8.69 | | 29.8 | 37.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813.log.json) |
| \[ResNet101 w/ DCN\](./fcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-mono3d.py) | 1x | 8.69 | | 29.8 | 37.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813.log.json) |
| [above w/ finetune](./fcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-mono3d_finetune.py) | 1x | 8.69 | | 32.1 | 39.5 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645-8d806dc2.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645.log.json) |
| above w/ tta | 1x | 8.69 | | 33.1 | 40.3 | |
......
......@@ -27,7 +27,7 @@ Models:
Metrics:
mAP: 29.9
NDS: 37.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210425_181341-8d5a21fe.pth
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth
- Name: fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune
In Collection: FCOS3D
......@@ -40,4 +40,4 @@ Models:
Metrics:
mAP: 32.1
NDS: 39.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210427_091419-35aaaad0.pth
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645-8d806dc2.pth
......@@ -17,7 +17,20 @@ Collections:
Version: v0.5.0
Models:
- Name: hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
- Name: pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py
Metadata:
Training Memory (GB): 17.1
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 40.0
NDS: 53.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth
- Name: pointpillars_hv_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: free_anchor/pointpillars_hv_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d.py
Metadata:
......@@ -28,9 +41,22 @@ Models:
Metrics:
mAP: 43.82
NDS: 54.86
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210816_163441-ae0897e7.pth
- Name: pointpillars_hv_regnet-400mf_fpn_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: configs/regnet/pointpillars_hv_regnet-400mf_fpn_sbn-all_8xb4-2x_nus-3d.py
Metadata:
Training Memory (GB): 17.3
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 44.8
NDS: 56.4
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210816_163441-ae0897e7.pth
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
- Name: pointpillars_hv_regnet-400mf_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/pointpillars_hv_regnet-400mf_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d.py
Metadata:
......@@ -56,7 +82,7 @@ Models:
NDS: 61.49
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210828_025608-bfbd506e.pth
- Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d
- Name: pointpillars_hv_regnet-1.6gf_fpn_head-free-anchor_sbn-all_8xb4-strong-aug-3x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/pointpillars_hv_regnet-1.6gf_fpn_head-free-anchor_sbn-all_8xb4-strong-aug-3x_nus-3d.py
Metadata:
......@@ -69,7 +95,7 @@ Models:
NDS: 62.45
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20210827_184909-14d2dbd1.pth
- Name: hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
- Name: pointpillars_hv_regnet-3.2gf_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/pointpillars_hv_regnet-3.2gf_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d.py
Metadata:
......@@ -82,7 +108,7 @@ Models:
NDS: 61.94
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210827_181237-e385c35a.pth
- Name: hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d
- Name: pointpillars_hv_regnet-3.2gf_fpn_head-free-anchor_sbn-all_8xb4-strong-aug-3x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/pointpillars_hv_regnet-3.2gf_fpn_head-free-anchor_sbn-all_8xb4-strong-aug-3x_nus-3d.py
Metadata:
......
......@@ -78,7 +78,7 @@ class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
train_pipeline = [
dict(
......
......@@ -77,7 +77,7 @@ class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
train_pipeline = [
dict(
......
......@@ -93,7 +93,7 @@ class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
train_pipeline = [
dict(
......
......@@ -94,7 +94,7 @@ class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
train_pipeline = [
dict(
......
......@@ -81,7 +81,7 @@ data_root = 'data/kitti/'
class_names = ['Car']
input_modality = dict(use_lidar=False, use_camera=True)
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
# file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
......
......@@ -26,5 +26,5 @@ Models:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 21.98
mAP: 21.86
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553-d46d9bb0.pth
......@@ -142,7 +142,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=True)
train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
......
# NuImages Results
# Mask R-CNN
<!-- [DATASET] -->
> [Mask R-CNN](https://arxiv.org/abs/1703.06870)
<!-- [ALGORITHM] -->
## Abstract
We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition.
<div align=center>
<img src="https://user-images.githubusercontent.com/40661020/143967081-c2552bed-9af2-46c4-ae44-5b3b74e5679f.png"/>
</div>
## Introduction
......
......@@ -18,8 +18,6 @@ model = dict(
loss_weight=0.2)))
data_root = 'data/nuimages/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
......@@ -30,13 +28,8 @@ train_pipeline = [
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='SegRescale', scale_factor=1 / 8),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg'])
dict(type='PackDetInputs')
]
data = dict(
train=dict(
......
......@@ -6,6 +6,7 @@ _base_ = [
model = dict(
type='HybridTaskCascade',
pretrained='torchvision://resnet50',
_scope_='mmdet',
backbone=dict(
type='ResNet',
depth=50,
......
......@@ -8,9 +8,6 @@ model = dict(
backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'),
roi_head=dict(
bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10)))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
......@@ -20,10 +17,7 @@ train_pipeline = [
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
dict(type='PackDetInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
......@@ -34,11 +28,11 @@ test_pipeline = [
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor')),
]
data = dict(
train=dict(pipeline=train_pipeline),
......
......@@ -8,9 +8,6 @@ model = dict(
backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'),
roi_head=dict(
bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10)))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
......@@ -20,10 +17,7 @@ train_pipeline = [
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
dict(type='PackDetInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
......@@ -34,11 +28,11 @@ test_pipeline = [
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor')),
]
data = dict(
train=dict(pipeline=train_pipeline),
......
......@@ -8,9 +8,6 @@ model = dict(
backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'),
roi_head=dict(
bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10)))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
......@@ -20,10 +17,7 @@ train_pipeline = [
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
dict(type='PackDetInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
......@@ -34,11 +28,11 @@ test_pipeline = [
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor')),
]
data = dict(
train=dict(pipeline=train_pipeline),
......
......@@ -13,8 +13,6 @@ file_client_args = dict(
'./data/nuscenes/': 's3://nuscenes/nuscenes/',
'data/nuscenes/': 's3://nuscenes/nuscenes/'
}))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [
dict(type='LoadImageFromFile'),
......@@ -25,11 +23,11 @@ test_pipeline = [
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor')),
]
data_root = 'data/nuimages/'
# data = dict(
......
Collections:
- Name: Mask R-CNN
Metadata:
Training Data: nuImages
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x TITAN Xp
Architecture:
- Softmax
- RPN
- Convolution
- Dense Connections
- FPN
- ResNet
- RoIAlign
Paper:
URL: https://arxiv.org/abs/1703.06870v3
Title: "Mask R-CNN"
README: configs/nuimages/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/mask_rcnn.py#L6
Version: v2.0.0
Models:
- Name: mask_rcnn_r50_fpn_1x_nuim
In Collection: Mask R-CNN
......
......@@ -27,3 +27,16 @@ Models:
Metrics:
mIoU: 66.65
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615-2147b2d1.pth
- Name: paconv_ssg-cuda_8xb8-cosine-200e_s3dis-seg
In Collection: PAConv
Config: configs/paconv/paconv_ssg-cuda_8xb8-cosine-200e_s3dis-seg.py
Metadata:
Training Data: S3DIS
Training Memory (GB): 5.8
Results:
- Task: 3D Semantic Segmentation
Dataset: S3DIS
Metrics:
mIoU: 66.65
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class_20210802_171802-e5ea9bb9.pth
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment