"vscode:/vscode.git/clone" did not exist on "d7badefcd533f54cccf7be66e876457bef142bb7"
Unverified Commit d7067e44 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

Bump version to v1.1.0rc2

Bump to v1.1.0rc2
parents 28fe73d2 fb0e57e5
...@@ -3,12 +3,12 @@ dataset_type = 'ScanNetDataset' ...@@ -3,12 +3,12 @@ dataset_type = 'ScanNetDataset'
data_root = 'data/scannet/' data_root = 'data/scannet/'
metainfo = dict( metainfo = dict(
CLASSES=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')) 'garbagebin'))
file_client_args = dict(backend='disk') # file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients. # Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details. # for more details.
......
...@@ -3,7 +3,7 @@ class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', ...@@ -3,7 +3,7 @@ class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
'bathtub', 'otherfurniture') 'bathtub', 'otherfurniture')
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
dataset_type = 'ScanNetSegDataset' dataset_type = 'ScanNetSegDataset'
data_root = 'data/scannet/' data_root = 'data/scannet/'
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
......
...@@ -3,7 +3,7 @@ data_root = 'data/sunrgbd/' ...@@ -3,7 +3,7 @@ data_root = 'data/sunrgbd/'
class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
'night_stand', 'bookshelf', 'bathtub') 'night_stand', 'bookshelf', 'bathtub')
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
file_client_args = dict(backend='disk') file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients. # Uncomment the following if use ceph or other file clients.
......
...@@ -16,7 +16,7 @@ file_client_args = dict(backend='disk') ...@@ -16,7 +16,7 @@ file_client_args = dict(backend='disk')
# }) # })
class_names = ['Car', 'Pedestrian', 'Cyclist'] class_names = ['Car', 'Pedestrian', 'Cyclist']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
...@@ -151,7 +151,8 @@ val_evaluator = dict( ...@@ -151,7 +151,8 @@ val_evaluator = dict(
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl', ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/gt.bin', waymo_bin_file='./data/waymo/waymo_format/gt.bin',
data_root='./data/waymo/waymo_format', data_root='./data/waymo/waymo_format',
file_client_args=file_client_args) file_client_args=file_client_args,
convert_kitti_format=False)
test_evaluator = val_evaluator test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')] vis_backends = [dict(type='LocalVisBackend')]
......
...@@ -11,7 +11,7 @@ file_client_args = dict(backend='disk') ...@@ -11,7 +11,7 @@ file_client_args = dict(backend='disk')
# backend='petrel', path_mapping=dict(data='s3://waymo_data/')) # backend='petrel', path_mapping=dict(data='s3://waymo_data/'))
class_names = ['Car'] class_names = ['Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
...@@ -135,7 +135,8 @@ val_evaluator = dict( ...@@ -135,7 +135,8 @@ val_evaluator = dict(
type='WaymoMetric', type='WaymoMetric',
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl', ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/gt.bin', waymo_bin_file='./data/waymo/waymo_format/gt.bin',
data_root='./data/waymo/waymo_format') data_root='./data/waymo/waymo_format',
convert_kitti_format=False)
test_evaluator = val_evaluator test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')] vis_backends = [dict(type='LocalVisBackend')]
......
# dataset settings
# D3 in the config name means the whole dataset is divided into 3 folds
# We only use one fold for efficient experiments
dataset_type = 'WaymoDataset'
data_root = 'data/waymo/kitti_format/'
class_names = ['Car', 'Pedestrian', 'Cyclist']
input_modality = dict(use_lidar=False, use_camera=True)
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
train_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=False,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
# base shape (1248, 832), scale (0.95, 1.05)
dict(
type='RandomResize3D',
scale=(1284, 832),
ratio_range=(0.95, 1.05),
keep_ratio=True,
),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Pack3DDetInputs',
keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers_2d', 'depths'
]),
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(1., 1.),
keep_ratio=True),
dict(type='Pack3DDetInputs', keys=['img']),
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(1., 1.),
keep_ratio=True),
dict(type='Pack3DDetInputs', keys=['img']),
]
metainfo = dict(CLASSES=class_names)
train_dataloader = dict(
batch_size=3,
num_workers=3,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='waymo_infos_train.pkl',
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
# load one frame every three frames
load_interval=5))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
))
test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
))
val_evaluator = dict(
type='WaymoMetric',
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/fov_gt.bin',
data_root='./data/waymo/waymo_format',
metric='LET_mAP',
load_type='fov_image_based',
)
test_evaluator = val_evaluator
...@@ -56,7 +56,7 @@ eval_pipeline = [ ...@@ -56,7 +56,7 @@ eval_pipeline = [
dict(type='Pack3DDetInputs', keys=['img']), dict(type='Pack3DDetInputs', keys=['img']),
] ]
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
train_dataloader = dict( train_dataloader = dict(
batch_size=3, batch_size=3,
...@@ -81,7 +81,7 @@ train_dataloader = dict( ...@@ -81,7 +81,7 @@ train_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', load_type='mv_image_based',
# load one frame every three frames # load one frame every three frames
load_interval=5)) load_interval=5))
...@@ -109,7 +109,7 @@ val_dataloader = dict( ...@@ -109,7 +109,7 @@ val_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', load_type='mv_image_based',
)) ))
test_dataloader = dict( test_dataloader = dict(
...@@ -136,7 +136,7 @@ test_dataloader = dict( ...@@ -136,7 +136,7 @@ test_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', load_type='mv_image_based',
)) ))
val_evaluator = dict( val_evaluator = dict(
...@@ -145,5 +145,6 @@ val_evaluator = dict( ...@@ -145,5 +145,6 @@ val_evaluator = dict(
waymo_bin_file='./data/waymo/waymo_format/cam_gt.bin', waymo_bin_file='./data/waymo/waymo_format/cam_gt.bin',
data_root='./data/waymo/waymo_format', data_root='./data/waymo/waymo_format',
metric='LET_mAP', metric='LET_mAP',
task='mono3d') load_type='mv_image_based',
)
test_evaluator = val_evaluator test_evaluator = val_evaluator
...@@ -62,7 +62,7 @@ eval_pipeline = [ ...@@ -62,7 +62,7 @@ eval_pipeline = [
dict(type='MultiViewWrapper', transforms=test_transforms), dict(type='MultiViewWrapper', transforms=test_transforms),
dict(type='Pack3DDetInputs', keys=['img']) dict(type='Pack3DDetInputs', keys=['img'])
] ]
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
train_dataloader = dict( train_dataloader = dict(
batch_size=2, batch_size=2,
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
model = dict( model = dict(
type='CascadeRCNN', type='CascadeRCNN',
pretrained='torchvision://resnet50', pretrained='torchvision://resnet50',
_scope_='mmdet',
backbone=dict( backbone=dict(
type='ResNet', type='ResNet',
depth=50, depth=50,
......
model = dict(
type='MinkSingleStage3DDetector',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
backbone=dict(type='MinkResNet', in_channels=3, depth=34),
bbox_head=dict(
type='FCAF3DHead',
in_channels=(64, 128, 256, 512),
out_channels=128,
voxel_size=.01,
pts_prune_threshold=100000,
pts_assign_threshold=27,
pts_center_threshold=18,
num_classes=18,
num_reg_outs=6,
center_loss=dict(type='mmdet.CrossEntropyLoss', use_sigmoid=True),
bbox_loss=dict(type='AxisAlignedIoULoss'),
cls_loss=dict(type='mmdet.FocalLoss'),
),
train_cfg=dict(),
test_cfg=dict(nms_pre=1000, iou_thr=.5, score_thr=.01))
...@@ -63,9 +63,9 @@ model = dict( ...@@ -63,9 +63,9 @@ model = dict(
# model training and testing settings # model training and testing settings
train_cfg=dict( train_cfg=dict(
_scope_='mmdet',
img_rpn=dict( img_rpn=dict(
assigner=dict( assigner=dict(
_scope_='mmdet',
type='MaxIoUAssigner', type='MaxIoUAssigner',
pos_iou_thr=0.7, pos_iou_thr=0.7,
neg_iou_thr=0.3, neg_iou_thr=0.3,
...@@ -73,7 +73,7 @@ model = dict( ...@@ -73,7 +73,7 @@ model = dict(
match_low_quality=True, match_low_quality=True,
ignore_iof_thr=-1), ignore_iof_thr=-1),
sampler=dict( sampler=dict(
type='mmdet.RandomSampler', type='RandomSampler',
num=256, num=256,
pos_fraction=0.5, pos_fraction=0.5,
neg_pos_ub=-1, neg_pos_ub=-1,
...@@ -90,7 +90,6 @@ model = dict( ...@@ -90,7 +90,6 @@ model = dict(
min_bbox_size=0), min_bbox_size=0),
img_rcnn=dict( img_rcnn=dict(
assigner=dict( assigner=dict(
_scope_='mmdet',
type='MaxIoUAssigner', type='MaxIoUAssigner',
pos_iou_thr=0.5, pos_iou_thr=0.5,
neg_iou_thr=0.5, neg_iou_thr=0.5,
...@@ -98,7 +97,7 @@ model = dict( ...@@ -98,7 +97,7 @@ model = dict(
match_low_quality=False, match_low_quality=False,
ignore_iof_thr=-1), ignore_iof_thr=-1),
sampler=dict( sampler=dict(
type='mmdet.RandomSampler', type='RandomSampler',
num=512, num=512,
pos_fraction=0.25, pos_fraction=0.25,
neg_pos_ub=-1, neg_pos_ub=-1,
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
model = dict( model = dict(
type='MaskRCNN', type='MaskRCNN',
pretrained='torchvision://resnet50', pretrained='torchvision://resnet50',
_scope_='mmdet',
backbone=dict( backbone=dict(
type='ResNet', type='ResNet',
depth=50, depth=50,
......
...@@ -16,8 +16,8 @@ param_scheduler = [ ...@@ -16,8 +16,8 @@ param_scheduler = [
] ]
# runtime settings # runtime settings
train_cfg = dict(by_epoch=True, max_epochs=100) train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
val_cfg = dict(interval=1) val_cfg = dict()
test_cfg = dict() test_cfg = dict()
# Default setting for scaling LR automatically # Default setting for scaling LR automatically
......
...@@ -16,8 +16,8 @@ param_scheduler = [ ...@@ -16,8 +16,8 @@ param_scheduler = [
] ]
# runtime settings # runtime settings
train_cfg = dict(by_epoch=True, max_epochs=150) train_cfg = dict(by_epoch=True, max_epochs=150, val_interval=1)
val_cfg = dict(interval=1) val_cfg = dict()
test_cfg = dict() test_cfg = dict()
# Default setting for scaling LR automatically # Default setting for scaling LR automatically
......
...@@ -16,8 +16,8 @@ param_scheduler = [ ...@@ -16,8 +16,8 @@ param_scheduler = [
] ]
# runtime settings # runtime settings
train_cfg = dict(by_epoch=True, max_epochs=200) train_cfg = dict(by_epoch=True, max_epochs=200, val_interval=1)
val_cfg = dict(interval=1) val_cfg = dict()
test_cfg = dict() test_cfg = dict()
# Default setting for scaling LR automatically # Default setting for scaling LR automatically
......
...@@ -16,8 +16,8 @@ param_scheduler = [ ...@@ -16,8 +16,8 @@ param_scheduler = [
] ]
# runtime settings # runtime settings
train_cfg = dict(by_epoch=True, max_epochs=50) train_cfg = dict(by_epoch=True, max_epochs=50, val_interval=1)
val_cfg = dict(interval=1) val_cfg = dict()
test_cfg = dict() test_cfg = dict()
# Default setting for scaling LR automatically # Default setting for scaling LR automatically
......
...@@ -210,7 +210,7 @@ model = dict( ...@@ -210,7 +210,7 @@ model = dict(
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car'] class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict( db_sampler = dict(
data_root=data_root, data_root=data_root,
......
...@@ -81,7 +81,7 @@ model = dict( ...@@ -81,7 +81,7 @@ model = dict(
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Car'] class_names = ['Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict( db_sampler = dict(
data_root=data_root, data_root=data_root,
......
...@@ -107,7 +107,7 @@ model = dict( ...@@ -107,7 +107,7 @@ model = dict(
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car'] class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict( db_sampler = dict(
......
...@@ -99,7 +99,7 @@ model = dict( ...@@ -99,7 +99,7 @@ model = dict(
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car'] class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict( db_sampler = dict(
data_root=data_root, data_root=data_root,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment