Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
4fab155b
Commit
4fab155b
authored
Jul 08, 2020
by
wangtai
Committed by
zhangwenwei
Jul 08, 2020
Browse files
Add visualization for lyft
parent
d25539e2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
39 additions
and
2 deletions
+39
-2
mmdet3d/datasets/lyft_dataset.py
mmdet3d/datasets/lyft_dataset.py
+39
-2
No files found.
mmdet3d/datasets/lyft_dataset.py
View file @
4fab155b
...
...
@@ -9,7 +9,8 @@ from pyquaternion import Quaternion
from
mmdet3d.core.evaluation.lyft_eval
import
lyft_eval
from
mmdet.datasets
import
DATASETS
from
..core.bbox
import
LiDARInstance3DBoxes
from
..core
import
show_result
from
..core.bbox
import
Box3DMode
,
LiDARInstance3DBoxes
from
.custom_3d
import
Custom3DDataset
...
...
@@ -354,7 +355,9 @@ class LyftDataset(Custom3DDataset):
logger
=
None
,
jsonfile_prefix
=
None
,
csv_savepath
=
None
,
result_names
=
[
'pts_bbox'
]):
result_names
=
[
'pts_bbox'
],
show
=
False
,
out_dir
=
None
):
"""Evaluation in Lyft protocol.
Args:
...
...
@@ -369,6 +372,10 @@ class LyftDataset(Custom3DDataset):
It includes the file path and the csv filename,
e.g., "a/b/filename.csv". If not specified,
the result will not be converted to csv file.
show (bool): Whether to visualize.
Default: False.
out_dir (str): Path to save the visualization results.
Default: None.
Returns:
dict[str: float]
...
...
@@ -387,8 +394,38 @@ class LyftDataset(Custom3DDataset):
if
tmp_dir
is
not
None
:
tmp_dir
.
cleanup
()
if
show
:
self
.
show
(
results
,
out_dir
)
return
results_dict
def
show
(
self
,
results
,
out_dir
):
"""Results visualization.
Args:
results (list[dict]): List of bounding boxes results.
out_dir (str): Output directory of visualization result.
"""
for
i
,
result
in
enumerate
(
results
):
example
=
self
.
prepare_test_data
(
i
)
points
=
example
[
'points'
][
0
].
_data
.
numpy
()
data_info
=
self
.
data_infos
[
i
]
pts_path
=
data_info
[
'lidar_path'
]
file_name
=
osp
.
split
(
pts_path
)[
-
1
].
split
(
'.'
)[
0
]
# for now we convert points into depth mode
points
=
points
[...,
[
1
,
0
,
2
]]
points
[...,
0
]
*=
-
1
inds
=
result
[
'pts_bbox'
][
'scores_3d'
]
>
0.1
gt_bboxes
=
self
.
get_ann_info
(
i
)[
'gt_bboxes_3d'
].
tensor
gt_bboxes
=
Box3DMode
.
convert
(
gt_bboxes
,
Box3DMode
.
LIDAR
,
Box3DMode
.
DEPTH
)
gt_bboxes
[...,
2
]
+=
gt_bboxes
[...,
5
]
/
2
pred_bboxes
=
result
[
'pts_bbox'
][
'boxes_3d'
][
inds
].
tensor
.
numpy
()
pred_bboxes
=
Box3DMode
.
convert
(
pred_bboxes
,
Box3DMode
.
LIDAR
,
Box3DMode
.
DEPTH
)
pred_bboxes
[...,
2
]
+=
pred_bboxes
[...,
5
]
/
2
show_result
(
points
,
gt_bboxes
,
pred_bboxes
,
out_dir
,
file_name
)
@
staticmethod
def
json2csv
(
json_path
,
csv_savepath
):
"""Convert the json file to csv format for submission.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment