Unverified Commit 1a3a1ade authored by ChaimZhu's avatar ChaimZhu Committed by GitHub
Browse files

[Enhance] add README and copyright pre-commmit (#1134)

* add precommmit to check readme

* update

* fix typos
parent c10e9be2
...@@ -43,3 +43,9 @@ repos: ...@@ -43,3 +43,9 @@ repos:
hooks: hooks:
- id: docformatter - id: docformatter
args: ["--in-place", "--wrap-descriptions", "79"] args: ["--in-place", "--wrap-descriptions", "79"]
- repo: https://github.com/open-mmlab/pre-commit-hooks
rev: master # Use the ref you want to point at
hooks:
- id: check-algo-readme
- id: check-copyright
args: ["mmdet3d"] # replace the dir_to_check with your expected directory to check
Collections:
- Name: Mask R-CNN
Metadata:
Training Data: nuImages
Training Techniques:
- SGD with Momentum
Architecture:
- RoI Align
- RPN
README: configs/nuimages/README.md
Code:
Version: v0.6.0
Models: Models:
- Name: mask_rcnn_r50_fpn_1x_nuim - Name: mask_rcnn_r50_fpn_1x_nuim
In Collection: Mask R-CNN In Collection: Mask R-CNN
......
Collections:
- Name: RegNetX
Metadata:
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Faster R-CNN
- Hard Voxelization
Paper:
URL: https://arxiv.org/abs/2003.13678
Title: 'Designing Network Design Spaces'
README: configs/regnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/backbones/nostem_regnet.py#L7
Version: v0.5.0
Models: Models:
- Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d - Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py
Metadata: Metadata:
Training Data: nuScenes Training Data: nuScenes
Training Memory (GB): 16.4 Training Memory (GB): 16.4
Architecture:
- RegNetX
- Hard Voxelization
Results: Results:
- Task: 3D Object Detection - Task: 3D Object Detection
Dataset: nuScenes Dataset: nuScenes
...@@ -31,11 +17,14 @@ Models: ...@@ -31,11 +17,14 @@ Models:
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d - Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py
Metadata: Metadata:
Training Data: nuScenes Training Data: nuScenes
Training Memory (GB): 17.3 Training Memory (GB): 17.3
Architecture:
- RegNetX
- Hard Voxelization
Results: Results:
- Task: 3D Object Detection - Task: 3D Object Detection
Dataset: nuScenes Dataset: nuScenes
...@@ -45,11 +34,14 @@ Models: ...@@ -45,11 +34,14 @@ Models:
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth
- Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d - Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py Config: configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py
Metadata: Metadata:
Training Data: nuScenes Training Data: nuScenes
Training Memory (GB): 24.0 Training Memory (GB): 24.0
Architecture:
- RegNetX
- Hard Voxelization
Results: Results:
- Task: 3D Object Detection - Task: 3D Object Detection
Dataset: nuScenes Dataset: nuScenes
...@@ -59,11 +51,14 @@ Models: ...@@ -59,11 +51,14 @@ Models:
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth
- Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d - Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d
In Collection: RegNetX In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py
Metadata: Metadata:
Training Data: Lyft Training Data: Lyft
Training Memory (GB): 15.9 Training Memory (GB): 15.9
Architecture:
- RegNetX
- Hard Voxelization
Results: Results:
- Task: 3D Object Detection - Task: 3D Object Detection
Dataset: Lyft Dataset: Lyft
...@@ -73,11 +68,14 @@ Models: ...@@ -73,11 +68,14 @@ Models:
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151-42513826.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151-42513826.pth
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d - Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d
In Collection: RegNetX In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py
Metadata: Metadata:
Training Data: Lyft Training Data: Lyft
Training Memory (GB): 13.0 Training Memory (GB): 13.0
Architecture:
- RegNetX
- Hard Voxelization
Results: Results:
- Task: 3D Object Detection - Task: 3D Object Detection
Dataset: Lyft Dataset: Lyft
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np import numpy as np
import torch import torch
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np import numpy as np
import torch import torch
from torch.nn import functional as F from torch.nn import functional as F
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np import numpy as np
import torch import torch
from torch.nn import functional as F from torch.nn import functional as F
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np import numpy as np
import torch import torch
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np import numpy as np
import torch import torch
......
# Copyright (c) OpenMMLab. All rights reserved.
import functools import functools
import numpy as np import numpy as np
import torch import torch
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch import torch
import warnings import warnings
from mmcv.cnn import build_conv_layer, build_norm_layer from mmcv.cnn import build_conv_layer, build_norm_layer
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch import torch
from mmcv.cnn import xavier_init from mmcv.cnn import xavier_init
from torch import nn as nn from torch import nn as nn
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np import numpy as np
import torch import torch
from mmcv.cnn import Scale, bias_init_with_prob, normal_init from mmcv.cnn import Scale, bias_init_with_prob, normal_init
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch import torch
from mmcv.runner import BaseModule, force_fp32 from mmcv.runner import BaseModule, force_fp32
from torch import nn as nn from torch import nn as nn
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch import torch
from torch.nn import functional as F from torch.nn import functional as F
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch import torch
from mmdet.models import DETECTORS from mmdet.models import DETECTORS
......
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.models.builder import DETECTORS from mmdet.models.builder import DETECTORS
from .single_stage_mono3d import SingleStageMono3DDetector from .single_stage_mono3d import SingleStageMono3DDetector
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch import torch
from torch import nn as nn from torch import nn as nn
......
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.cnn import ConvModule from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule from mmcv.runner import BaseModule
from torch import nn as nn from torch import nn as nn
......
# Copyright (c) OpenMMLab. All rights reserved.
import math import math
import numpy as np import numpy as np
from mmcv.cnn import ConvModule, build_conv_layer from mmcv.cnn import ConvModule, build_conv_layer
......
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.runner import BaseModule from mmcv.runner import BaseModule
from torch import nn as nn from torch import nn as nn
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment