Unverified Commit 1a3a1ade authored by ChaimZhu's avatar ChaimZhu Committed by GitHub
Browse files

[Enhance] add README and copyright pre-commmit (#1134)

* add precommmit to check readme

* update

* fix typos
parent c10e9be2
......@@ -43,3 +43,9 @@ repos:
hooks:
- id: docformatter
args: ["--in-place", "--wrap-descriptions", "79"]
- repo: https://github.com/open-mmlab/pre-commit-hooks
rev: master # Use the ref you want to point at
hooks:
- id: check-algo-readme
- id: check-copyright
args: ["mmdet3d"] # replace the dir_to_check with your expected directory to check
Collections:
- Name: Mask R-CNN
Metadata:
Training Data: nuImages
Training Techniques:
- SGD with Momentum
Architecture:
- RoI Align
- RPN
README: configs/nuimages/README.md
Code:
Version: v0.6.0
Models:
- Name: mask_rcnn_r50_fpn_1x_nuim
In Collection: Mask R-CNN
......
Collections:
- Name: RegNetX
Metadata:
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Faster R-CNN
- Hard Voxelization
Paper:
URL: https://arxiv.org/abs/2003.13678
Title: 'Designing Network Design Spaces'
README: configs/regnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/backbones/nostem_regnet.py#L7
Version: v0.5.0
Models:
- Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX
In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 16.4
Architecture:
- RegNetX
- Hard Voxelization
Results:
- Task: 3D Object Detection
Dataset: nuScenes
......@@ -31,11 +17,14 @@ Models:
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX
In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 17.3
Architecture:
- RegNetX
- Hard Voxelization
Results:
- Task: 3D Object Detection
Dataset: nuScenes
......@@ -45,11 +34,14 @@ Models:
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth
- Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX
In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 24.0
Architecture:
- RegNetX
- Hard Voxelization
Results:
- Task: 3D Object Detection
Dataset: nuScenes
......@@ -59,11 +51,14 @@ Models:
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth
- Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d
In Collection: RegNetX
In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d.py
Metadata:
Training Data: Lyft
Training Memory (GB): 15.9
Architecture:
- RegNetX
- Hard Voxelization
Results:
- Task: 3D Object Detection
Dataset: Lyft
......@@ -73,11 +68,14 @@ Models:
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151-42513826.pth
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d
In Collection: RegNetX
In Collection: PointPillars
Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d.py
Metadata:
Training Data: Lyft
Training Memory (GB): 13.0
Architecture:
- RegNetX
- Hard Voxelization
Results:
- Task: 3D Object Detection
Dataset: Lyft
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from torch.nn import functional as F
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from torch.nn import functional as F
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
......
# Copyright (c) OpenMMLab. All rights reserved.
import functools
import numpy as np
import torch
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import warnings
from mmcv.cnn import build_conv_layer, build_norm_layer
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.cnn import xavier_init
from torch import nn as nn
......
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmcv.cnn import Scale, bias_init_with_prob, normal_init
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.runner import BaseModule, force_fp32
from torch import nn as nn
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch.nn import functional as F
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmdet.models import DETECTORS
......
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.models.builder import DETECTORS
from .single_stage_mono3d import SingleStageMono3DDetector
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import nn as nn
......
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from torch import nn as nn
......
# Copyright (c) OpenMMLab. All rights reserved.
import math
import numpy as np
from mmcv.cnn import ConvModule, build_conv_layer
......
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.runner import BaseModule
from torch import nn as nn
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment