useful_tools.md 12.5 KB
Newer Older
twang's avatar
twang committed
1
2
3
4
5
6
We provide lots of useful tools under `tools/` directory.

# Log Analysis

You can plot loss/mAP curves given a training log file. Run `pip install seaborn` first to install the dependency.

7
![loss curve image](../../resources/loss_curve.png)
twang's avatar
twang committed
8
9

```shell
Ziyi Wu's avatar
Ziyi Wu committed
10
python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}] [--mode ${MODE}] [--interval ${INTERVAL}]
twang's avatar
twang committed
11
12
```

13
14
**Notice**: If the metric you want to plot is calculated in the eval stage, you need to add the flag `--mode eval`. If you perform evaluation with an interval of `${INTERVAL}`, you need to add the args `--interval ${INTERVAL}`.

twang's avatar
twang committed
15
16
Examples:

17
- Plot the classification loss of some run.
twang's avatar
twang committed
18

19
20
21
  ```shell
  python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls
  ```
twang's avatar
twang committed
22

23
- Plot the classification and regression loss of some run, and save the figure to a pdf.
twang's avatar
twang committed
24

25
26
27
  ```shell
  python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out losses.pdf
  ```
twang's avatar
twang committed
28

29
- Compare the bbox mAP of two runs in the same figure.
twang's avatar
twang committed
30

31
32
33
34
35
36
  ```shell
  # evaluate PartA2 and second on KITTI according to Car_3D_moderate_strict
  python tools/analysis_tools/analyze_logs.py plot_curve tools/logs/PartA2.log.json tools/logs/second.log.json --keys KITTI/Car_3D_moderate_strict --legend PartA2 second --mode eval --interval 1
  # evaluate PointPillars for car and 3 classes on KITTI according to Car_3D_moderate_strict
  python tools/analysis_tools/analyze_logs.py plot_curve tools/logs/pp-3class.log.json tools/logs/pp.log.json --keys KITTI/Car_3D_moderate_strict --legend pp-3class pp --mode eval --interval 2
  ```
twang's avatar
twang committed
37
38
39
40

You can also compute the average training speed.

```shell
Ziyi Wu's avatar
Ziyi Wu committed
41
python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-outliers]
twang's avatar
twang committed
42
43
44
45
46
47
48
49
50
51
52
53
```

The output is expected to be like the following.

```
-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter
```

54
 
55

twang's avatar
twang committed
56
57
# Visualization

58
59
## Results

60
To see the prediction results of trained models, you can run the following command
twang's avatar
twang committed
61
62
63
64
65

```bash
python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --show --show-dir ${SHOW_DIR}
```

66
After running this command, plotted results including input data and the output of networks visualized on the input (e.g. `***_points.obj` and `***_pred.obj` in single-modality 3D detection task) will be saved in `${SHOW_DIR}`.
twang's avatar
twang committed
67

68
To see the prediction results during evaluation, you can run the following command
Ziyi Wu's avatar
Ziyi Wu committed
69

twang's avatar
twang committed
70
```bash
71
python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --eval 'mAP' --eval-options 'show=True' 'out_dir=${SHOW_DIR}'
twang's avatar
twang committed
72
```
Ziyi Wu's avatar
Ziyi Wu committed
73

74
After running this command, you will obtain the input data, the output of networks and ground-truth labels visualized on the input (e.g. `***_points.obj`, `***_pred.obj`, `***_gt.obj`, `***_img.png` and `***_pred.png` in multi-modality detection task) in `${SHOW_DIR}`. When `show` is enabled, [Open3D](http://www.open3d.org/) will be used to visualize the results online. If you are running test in remote server without GUI, the online visualization is not supported, you can set `show=False` to only save the output results in `{SHOW_DIR}`.
twang's avatar
twang committed
75

76
77
As for offline visualization, you will have two options.
To visualize the results with `Open3D` backend, you can run the following command
Ziyi Wu's avatar
Ziyi Wu committed
78

79
```bash
80
python tools/misc/visualize_results.py ${CONFIG_FILE} --result ${RESULTS_PATH} --show-dir ${SHOW_DIR}
81
```
Ziyi Wu's avatar
Ziyi Wu committed
82

83
![](../../resources/open3d_visual.*)
84

85
Or you can use 3D visualization software such as the [MeshLab](http://www.meshlab.net/) to open these files under `${SHOW_DIR}` to see the 3D detection output. Specifically, open `***_points.obj` to see the input point cloud and open `***_pred.obj` to see the predicted 3D bounding boxes. This allows the inference and results generation to be done in remote server and the users can open them on their host with GUI.
twang's avatar
twang committed
86
87
88

**Notice**: The visualization API is a little unstable since we plan to refactor these parts together with MMDetection in the future.

89
90
## Dataset

91
We also provide scripts to visualize the dataset without inference. You can use `tools/misc/browse_dataset.py` to show loaded data and ground-truth online and save them on the disk. Currently we support single-modality 3D detection and 3D segmentation on all the datasets, multi-modality 3D detection on KITTI and SUN RGB-D, as well as monocular 3D detection on nuScenes. To browse the KITTI dataset, you can run the following command
92
93

```shell
94
python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task det --output-dir ${OUTPUT_DIR} --online
95
96
```

97
**Notice**: Once specifying `--output-dir`, the images of views specified by users will be saved when pressing `_ESC_` in open3d window. If you don't have a monitor, you can remove the `--online` flag to only save the visualization results and browse them offline.
98

99
100
101
102
103
104
To verify the data consistency and the effect of data augmentation, you can also add `--aug` flag to visualize the data after data augmentation using the command as below:

```shell
python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task det --aug --output-dir ${OUTPUT_DIR} --online
```

105
If you also want to show 2D images with 3D bounding boxes projected onto them, you need to find a config that supports multi-modality data loading, and then change the `--task` args to `multi_modality-det`. An example is showed below
106
107

```shell
108
python tools/misc/browse_dataset.py configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py --task multi_modality-det --output-dir ${OUTPUT_DIR} --online
109
110
```

111
![](../../resources/browse_dataset_multi_modality.png)
112
113
114
115

You can simply browse different datasets using different configs, e.g. visualizing the ScanNet dataset in 3D semantic segmentation task

```shell
116
python tools/misc/browse_dataset.py configs/_base_/datasets/scannet_seg-3d-20class.py --task seg --output-dir ${OUTPUT_DIR} --online
117
118
```

119
![](../../resources/browse_dataset_seg.png)
120

121
122
123
124
125
126
And browsing the nuScenes dataset in monocular 3D detection task

```shell
python tools/misc/browse_dataset.py configs/_base_/datasets/nus-mono3d.py --task mono-det --output-dir ${OUTPUT_DIR} --online
```

127
![](../../resources/browse_dataset_mono.png)
128

129
 
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Model Serving

**Note**: This tool is still experimental now, only SECOND is supported to be served with [`TorchServe`](https://pytorch.org/serve/). We'll support more models in the future.

In order to serve an `MMDetection3D` model with [`TorchServe`](https://pytorch.org/serve/), you can follow the steps:

## 1. Convert the model from MMDetection3D to TorchServe

```shell
python tools/deployment/mmdet3d2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}
```

**Note**: ${MODEL_STORE} needs to be an absolute path to a folder.

## 2. Build `mmdet3d-serve` docker image

```shell
docker build -t mmdet3d-serve:latest docker/serve/
```

## 3. Run `mmdet3d-serve`

Check the official docs for [running TorchServe with docker](https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment).

In order to run it on the GPU, you need to install [nvidia-docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). You can omit the `--gpus` argument in order to run on the CPU.

Example:

```shell
docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \
--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
mmdet3d-serve:latest
```

[Read the docs](https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md/) about the Inference (8080), Management (8081) and Metrics (8082) APis

## 4. Test deployment

You can use `test_torchserver.py` to compare result of torchserver and pytorch.

```shell
python tools/deployment/test_torchserver.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--device ${DEVICE}] [--score-thr ${SCORE_THR}]
```

Example:

```shell
python tools/deployment/test_torchserver.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth second
```

187
 
188

twang's avatar
twang committed
189
190
# Model Complexity

191
You can use `tools/analysis_tools/get_flops.py` in MMDetection3D, a script adapted from [flops-counter.pytorch](https://github.com/sovrasov/flops-counter.pytorch), to compute the FLOPs and params of a given model.
twang's avatar
twang committed
192
193

```shell
Ziyi Wu's avatar
Ziyi Wu committed
194
python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
twang's avatar
twang committed
195
196
197
198
199
200
```

You will get the results like this.

```text
==============================
201
202
203
Input shape: (40000, 4)
Flops: 5.78 GFLOPs
Params: 953.83 k
twang's avatar
twang committed
204
205
206
207
==============================
```

**Note**: This tool is still experimental and we do not guarantee that the
Ziyi Wu's avatar
Ziyi Wu committed
208
209
number is absolutely correct. You may well use the result for simple
comparisons, but double check it before you adopt it in technical reports or papers.
twang's avatar
twang committed
210
211

1. FLOPs are related to the input shape while parameters are not. The default
212
   input shape is (1, 40000, 4).
twang's avatar
twang committed
213
2. Some operators are not counted into FLOPs like GN and custom operators. Refer to [`mmcv.cnn.get_model_complexity_info()`](https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py) for details.
214
3. We currently only support FLOPs calculation of single-stage models with single-modality input (point cloud or image). We will support two-stage and multi-modality models in the future.
twang's avatar
twang committed
215

216
 
217

twang's avatar
twang committed
218
219
220
221
# Model Conversion

## RegNet model to MMDetection

Ziyi Wu's avatar
Ziyi Wu committed
222
223
`tools/model_converters/regnet2mmdet.py` convert keys in pycls pretrained RegNet models to
MMDetection style.
twang's avatar
twang committed
224
225

```shell
Ziyi Wu's avatar
Ziyi Wu committed
226
python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]
twang's avatar
twang committed
227
228
229
230
231
```

## Detectron ResNet to Pytorch

`tools/detectron2pytorch.py` in MMDetection could convert keys in the original detectron pretrained
Ziyi Wu's avatar
Ziyi Wu committed
232
ResNet models to PyTorch style.
twang's avatar
twang committed
233
234
235
236
237
238
239

```shell
python tools/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]
```

## Prepare a model for publishing

Ziyi Wu's avatar
Ziyi Wu committed
240
`tools/model_converters/publish_model.py` helps users to prepare their model for publishing.
twang's avatar
twang committed
241
242
243
244
245
246

Before you upload a model to AWS, you may want to

1. convert model weights to CPU tensors
2. delete the optimizer states and
3. compute the hash of the checkpoint file and append the hash id to the
Ziyi Wu's avatar
Ziyi Wu committed
247
   filename.
twang's avatar
twang committed
248
249

```shell
Ziyi Wu's avatar
Ziyi Wu committed
250
python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}
twang's avatar
twang committed
251
252
253
254
255
```

E.g.,

```shell
Ziyi Wu's avatar
Ziyi Wu committed
256
python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth
twang's avatar
twang committed
257
258
259
260
```

The final output filename will be `faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth`.

261
 
262

twang's avatar
twang committed
263
264
# Dataset Conversion

265
`tools/dataset_converters/` contains tools for converting datasets to other formats. Most of them convert datasets to pickle based info files, like kitti, nuscenes and lyft. Waymo converter is used to reorganize waymo raw data like KITTI style. Users could refer to them for our approach to converting data format. It is also convenient to modify them to use as scripts like nuImages converter.
twang's avatar
twang committed
266
267
268
269

To convert the nuImages dataset into COCO format, please use the command below:

```shell
270
python -u tools/dataset_converters/nuimage_converter.py --data-root ${DATA_ROOT} --version ${VERSIONS} \
twang's avatar
twang committed
271
272
273
                                                    --out-dir ${OUT_DIR} --nproc ${NUM_WORKERS} --extra-tag ${TAG}
```

274
275
276
277
278
- `--data-root`: the root of the dataset, defaults to `./data/nuimages`.
- `--version`: the version of the dataset, defaults to `v1.0-mini`. To get the full dataset, please use `--version v1.0-train v1.0-val v1.0-mini`
- `--out-dir`: the output directory of annotations and semantic masks, defaults to `./data/nuimages/annotations/`.
- `--nproc`: number of workers for data preparation, defaults to `4`. Larger number could reduce the preparation time as images are processed in parallel.
- `--extra-tag`: extra tag of the annotations, defaults to `nuimages`. This can be used to separate different annotations processed in different time for study.
twang's avatar
twang committed
279

280
More details could be referred to the [doc](https://mmdetection3d.readthedocs.io/en/latest/data_preparation.html) for dataset preparation and [README](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/nuimages/README.md/) for nuImages dataset.
twang's avatar
twang committed
281

282
 
283

twang's avatar
twang committed
284
285
286
287
# Miscellaneous

## Print the entire config

Ziyi Wu's avatar
Ziyi Wu committed
288
289
`tools/misc/print_config.py` prints the whole config verbatim, expanding all its
imports.
twang's avatar
twang committed
290
291

```shell
Ziyi Wu's avatar
Ziyi Wu committed
292
python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]
twang's avatar
twang committed
293
```