getting_started.md 11.3 KB
Newer Older
twang's avatar
twang committed
1
# Prerequisites
zhangwenwei's avatar
zhangwenwei committed
2

twang's avatar
twang committed
3
4
5
6
7
- Linux or macOS (Windows is not currently officially supported)
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
- GCC 5+
xiliu8006's avatar
xiliu8006 committed
8
9
10
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)


11
12
13
14
The required versions of MMCV, MMDetection and MMSegmentation for different versions of MMDetection3D are as below. Please install the correct version of MMCV, MMDetection and MMSegmentation to avoid installation issues.

| MMDetection3D version | MMDetection version | MMSegmentation version |    MMCV version     |
|:-------------------:|:-------------------:|:-------------------:|:-------------------:|
15
| master              | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
ChaimZhu's avatar
ChaimZhu committed
16
| 0.18.1              | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
Wenhao Wu's avatar
Wenhao Wu committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
| 0.18.0              | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.17.3              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.2              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.1              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.16.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.15.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.14.0              | mmdet>=2.10.0, <=2.11.0| mmseg==0.14.0 | mmcv-full>=1.3.1, <=1.4.0|
| 0.13.0              | mmdet>=2.10.0, <=2.11.0| Not required  | mmcv-full>=1.2.4, <=1.4.0|
| 0.12.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4.0|
| 0.11.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.10.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.9.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.8.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.3.0|
| 0.7.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.3.0|
Tai-Wang's avatar
Tai-Wang committed
32
| 0.6.0               | mmdet>=2.4.0, <=2.11.0 | Not required  | mmcv-full>=1.1.3, <=1.2.0|
33
| 0.5.0               | 2.3.0                  | Not required  | mmcv-full==1.0.5|
zhangwenwei's avatar
Doc  
zhangwenwei committed
34

twang's avatar
twang committed
35
# Installation
zhangwenwei's avatar
Doc  
zhangwenwei committed
36

twang's avatar
twang committed
37
## Install MMDetection3D
zhangwenwei's avatar
Doc  
zhangwenwei committed
38

39
**a. Create a conda virtual environment and activate it.**
zhangwenwei's avatar
zhangwenwei committed
40

twang's avatar
twang committed
41
42
43
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
zhangwenwei's avatar
Doc  
zhangwenwei committed
44
45
```

46
**b. Install PyTorch and torchvision following the [official instructions](https://pytorch.org/).**
Wenwei Zhang's avatar
Wenwei Zhang committed
47

twang's avatar
twang committed
48
49
```shell
conda install pytorch torchvision -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
50
51
```

twang's avatar
twang committed
52
53
Note: Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
Wenwei Zhang's avatar
Wenwei Zhang committed
54

55
`E.g. 1` If you have CUDA 10.1 installed under `/usr/local/cuda` and would like to install
twang's avatar
twang committed
56
PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.
Wenwei Zhang's avatar
Wenwei Zhang committed
57

twang's avatar
twang committed
58
```python
59
conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
60
61
```

twang's avatar
twang committed
62
63
`E.g. 2` If you have CUDA 9.2 installed under `/usr/local/cuda` and would like to install
PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.
zhangwenwei's avatar
zhangwenwei committed
64

twang's avatar
twang committed
65
66
```python
conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
wangtai's avatar
wangtai committed
67
68
```

69
If you build PyTorch from source instead of installing the prebuilt package,
twang's avatar
twang committed
70
you can use more CUDA versions such as 9.0.
71

72
**c. Install [MMCV](https://mmcv.readthedocs.io/en/latest/).**
xiliu8006's avatar
xiliu8006 committed
73
*mmcv-full* is necessary since MMDetection3D relies on MMDetection, CUDA ops in *mmcv-full* are required.
zhangwenwei's avatar
Doc  
zhangwenwei committed
74

75
`e.g.` The pre-build *mmcv-full* could be installed by running: (available versions could be found [here](https://mmcv.readthedocs.io/en/latest/#install-with-pip))
zhangwenwei's avatar
zhangwenwei committed
76

Ziyi Wu's avatar
Ziyi Wu committed
77
```shell
xiliu8006's avatar
xiliu8006 committed
78
79
80
81
82
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```

Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example, to install the latest `mmcv-full` with `CUDA 11` and `PyTorch 1.7.0`, use the following command:

twang's avatar
twang committed
83
```shell
xiliu8006's avatar
xiliu8006 committed
84
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
twang's avatar
twang committed
85
```
zhangwenwei's avatar
zhangwenwei committed
86

xiliu8006's avatar
xiliu8006 committed
87
See [here](https://github.com/open-mmlab/mmcv#install-with-pip) for different versions of MMCV compatible to different PyTorch and CUDA versions.
twang's avatar
twang committed
88
Optionally, you could also build the full version from source:
zhangwenwei's avatar
zhangwenwei committed
89

twang's avatar
twang committed
90
```shell
xiliu8006's avatar
xiliu8006 committed
91
92
93
94
95
96
97
98
99
100
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
cd ..
```

Or directly run

```shell
pip install mmcv-full
twang's avatar
twang committed
101
```
zhangwenwei's avatar
zhangwenwei committed
102

103
**d. Install [MMDetection](https://github.com/open-mmlab/mmdetection).**
zhangwenwei's avatar
zhangwenwei committed
104

twang's avatar
twang committed
105
```shell
hjin2902's avatar
hjin2902 committed
106
pip install mmdet==2.14.0
twang's avatar
twang committed
107
```
zhangwenwei's avatar
zhangwenwei committed
108

twang's avatar
twang committed
109
Optionally, you could also build MMDetection from source in case you want to modify the code:
zhangwenwei's avatar
zhangwenwei committed
110
111

```shell
twang's avatar
twang committed
112
113
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
hjin2902's avatar
hjin2902 committed
114
git checkout v2.14.0  # switch to v2.14.0 branch
twang's avatar
twang committed
115
116
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
zhangwenwei's avatar
zhangwenwei committed
117
118
```

119
120
121
**e. Install [MMSegmentation](https://github.com/open-mmlab/mmsegmentation).**

```shell
hjin2902's avatar
hjin2902 committed
122
pip install mmsegmentation==0.14.1
123
124
125
126
127
128
129
```

Optionally, you could also build MMSegmentation from source in case you want to modify the code:

```shell
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
hjin2902's avatar
hjin2902 committed
130
git checkout v0.14.1  # switch to v0.14.1 branch
131
132
133
134
pip install -e .  # or "python setup.py develop"
```

**f. Clone the MMDetection3D repository.**
zhangwenwei's avatar
Doc  
zhangwenwei committed
135

twang's avatar
twang committed
136
137
138
139
```shell
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
```
zhangwenwei's avatar
zhangwenwei committed
140

141
**g.Install build requirements and then install MMDetection3D.**
zhangwenwei's avatar
zhangwenwei committed
142

twang's avatar
twang committed
143
144
145
```shell
pip install -v -e .  # or "python setup.py develop"
```
zhangwenwei's avatar
zhangwenwei committed
146

twang's avatar
twang committed
147
Note:
zhangwenwei's avatar
Doc  
zhangwenwei committed
148

twang's avatar
twang committed
149
150
1. The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models.
It is recommended that you run step d each time you pull some updates from github. If C++/CUDA codes are modified, then this step is compulsory.
zhangwenwei's avatar
Doc  
zhangwenwei committed
151

twang's avatar
twang committed
152
    > Important: Be sure to remove the `./build` folder if you reinstall mmdet with a different CUDA/PyTorch version.
zhangwenwei's avatar
zhangwenwei committed
153

twang's avatar
twang committed
154
155
156
157
158
    ```shell
    pip uninstall mmdet3d
    rm -rf ./build
    find . -name "*.so" | xargs rm
    ```
zhangwenwei's avatar
zhangwenwei committed
159

160
2. Following the above instructions, MMDetection3D is installed on `dev` mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number).
zhangwenwei's avatar
zhangwenwei committed
161

twang's avatar
twang committed
162
163
3. If you would like to use `opencv-python-headless` instead of `opencv-python`,
you can install it before installing MMCV.
zhangwenwei's avatar
zhangwenwei committed
164

twang's avatar
twang committed
165
4. Some dependencies are optional. Simply running `pip install -v -e .` will only install the minimum runtime requirements. To use optional dependencies like `albumentations` and `imagecorruptions` either install them manually with `pip install -r requirements/optional.txt` or specify desired extras when calling `pip` (e.g. `pip install -v -e .[optional]`). Valid keys for the extras field are: `all`, `tests`, `build`, and `optional`.
zhangwenwei's avatar
zhangwenwei committed
166

twang's avatar
twang committed
167
5. The code can not be built for CPU only environment (where CUDA isn't available) for now.
zhangwenwei's avatar
zhangwenwei committed
168

twang's avatar
twang committed
169
## Another option: Docker Image
Wenwei Zhang's avatar
Wenwei Zhang committed
170

twang's avatar
twang committed
171
We provide a [Dockerfile](https://github.com/open-mmlab/mmdetection3d/blob/master/docker/Dockerfile) to build an image.
Wenwei Zhang's avatar
Wenwei Zhang committed
172

twang's avatar
twang committed
173
174
175
176
```shell
# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmdetection3d docker/
```
Wenwei Zhang's avatar
Wenwei Zhang committed
177

twang's avatar
twang committed
178
Run it with
Wenwei Zhang's avatar
Wenwei Zhang committed
179

twang's avatar
twang committed
180
181
182
```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d
```
Wenwei Zhang's avatar
Wenwei Zhang committed
183

twang's avatar
twang committed
184
## A from-scratch setup script
Wenwei Zhang's avatar
Wenwei Zhang committed
185

186
Here is a full script for setting up MMdetection3D with conda.
Wenwei Zhang's avatar
Wenwei Zhang committed
187

twang's avatar
twang committed
188
189
190
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
Wenwei Zhang's avatar
Wenwei Zhang committed
191

192
# install latest PyTorch prebuilt with the default prebuilt CUDA version (usually the latest)
twang's avatar
twang committed
193
conda install -c pytorch pytorch torchvision -y
Wenwei Zhang's avatar
Wenwei Zhang committed
194

twang's avatar
twang committed
195
196
# install mmcv
pip install mmcv-full
liyinhao's avatar
liyinhao committed
197

twang's avatar
twang committed
198
199
# install mmdetection
pip install git+https://github.com/open-mmlab/mmdetection.git
liyinhao's avatar
liyinhao committed
200

201
202
203
# install mmsegmentation
pip install git+https://github.com/open-mmlab/mmsegmentation.git

twang's avatar
twang committed
204
205
206
207
# install mmdetection3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -v -e .
zhangwenwei's avatar
zhangwenwei committed
208
```
liyinhao's avatar
liyinhao committed
209

twang's avatar
twang committed
210
211
212
## Using multiple MMDetection3D versions

The train and test scripts already modify the `PYTHONPATH` to ensure the script use the MMDetection3D in the current directory.
liyinhao's avatar
liyinhao committed
213

twang's avatar
twang committed
214
215
216
217
To use the default MMDetection3D installed in the environment rather than that you are working with, you can remove the following line in those scripts

```shell
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
liyinhao's avatar
liyinhao committed
218
219
```

twang's avatar
twang committed
220
# Verification
liyinhao's avatar
liyinhao committed
221

222
## Verify with point cloud demo
zhangwenwei's avatar
Doc  
zhangwenwei committed
223

224
We provide several demo scripts to test a single sample. Pre-trained models can be downloaded from [model zoo](model_zoo.md). To test a single-modality 3D detection on point cloud scenes:
zhangwenwei's avatar
Doc  
zhangwenwei committed
225
226

```shell
wuyuefeng's avatar
Demo  
wuyuefeng committed
227
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
zhangwenwei's avatar
Doc  
zhangwenwei committed
228
229
230
231
232
```

Examples:

```shell
233
python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
zhangwenwei's avatar
zhangwenwei committed
234
```
235

yinchimaoliang's avatar
yinchimaoliang committed
236
If you want to input a `ply` file, you can use the following function and convert it to `bin` format. Then you can use the converted `bin` file to generate demo.
237
Note that you need to install `pandas` and `plyfile` before using this script. This function can also be used for data preprocessing for training ```ply data```.
238

yinchimaoliang's avatar
yinchimaoliang committed
239
240
241
242
243
```python
import numpy as np
import pandas as pd
from plyfile import PlyData

244
def convert_ply(input_path, output_path):
yinchimaoliang's avatar
yinchimaoliang committed
245
246
247
248
249
250
251
252
253
254
    plydata = PlyData.read(input_path)  # read file
    data = plydata.elements[0].data  # read data
    data_pd = pd.DataFrame(data)  # convert to DataFrame
    data_np = np.zeros(data_pd.shape, dtype=np.float)  # initialize array to store data
    property_names = data[0].dtype.names  # read names of properties
    for i, name in enumerate(
            property_names):  # read data by property
        data_np[:, i] = data_pd[name]
    data_np.astype(np.float32).tofile(output_path)
```
255

yinchimaoliang's avatar
yinchimaoliang committed
256
Examples:
zhangwenwei's avatar
zhangwenwei committed
257

yinchimaoliang's avatar
yinchimaoliang committed
258
259
260
```python
convert_ply('./test.ply', './test.bin')
```
zhangwenwei's avatar
zhangwenwei committed
261

262
If you have point clouds in other format (`off`, `obj`, etc.), you can use `trimesh` to convert them into `ply`.
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

```python
import trimesh

def to_ply(input_path, output_path, original_type):
    mesh = trimesh.load(input_path, file_type=original_type)  # read file
    mesh.export(output_path, file_type='ply')  # convert to ply
```

Examples:

```python
to_ply('./test.obj', './test.ply', 'obj')
```

278
More demos about single/multi-modality and indoor/outdoor 3D detection can be found in [demo](demo.md).
279

twang's avatar
twang committed
280
## High-level APIs for testing point clouds
zhangwenwei's avatar
zhangwenwei committed
281

twang's avatar
twang committed
282
### Synchronous interface
Ziyi Wu's avatar
Ziyi Wu committed
283

liyinhao's avatar
liyinhao committed
284
Here is an example of building the model and test given point clouds.
zhangwenwei's avatar
zhangwenwei committed
285
286

```python
287
from mmdet3d.apis import init_model, inference_detector
zhangwenwei's avatar
zhangwenwei committed
288

liyinhao's avatar
liyinhao committed
289
290
config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth'
zhangwenwei's avatar
zhangwenwei committed
291
292

# build the model from a config file and a checkpoint file
293
model = init_model(config_file, checkpoint_file, device='cuda:0')
zhangwenwei's avatar
zhangwenwei committed
294
295

# test a single image and show the results
liyinhao's avatar
liyinhao committed
296
297
298
299
point_cloud = 'test.bin'
result, data = inference_detector(model, point_cloud)
# visualize the results and save the results in 'results' folder
model.show_results(data, result, out_dir='results')
zhangwenwei's avatar
zhangwenwei committed
300
```