getting_started.md 11.2 KB
Newer Older
twang's avatar
twang committed
1
# Prerequisites
zhangwenwei's avatar
zhangwenwei committed
2

twang's avatar
twang committed
3
4
5
6
7
- Linux or macOS (Windows is not currently officially supported)
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
- GCC 5+
xiliu8006's avatar
xiliu8006 committed
8
9
10
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)


11
12
13
14
The required versions of MMCV, MMDetection and MMSegmentation for different versions of MMDetection3D are as below. Please install the correct version of MMCV, MMDetection and MMSegmentation to avoid installation issues.

| MMDetection3D version | MMDetection version | MMSegmentation version |    MMCV version     |
|:-------------------:|:-------------------:|:-------------------:|:-------------------:|
Tai-Wang's avatar
Tai-Wang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| master              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.17.3              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.17.2              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.17.1              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.17.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.16.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.15.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.5.0|
| 0.14.0              | mmdet>=2.10.0, <=2.11.0| mmseg==0.14.0 | mmcv-full>=1.3.1, <=1.5.0|
| 0.13.0              | mmdet>=2.10.0, <=2.11.0| Not required  | mmcv-full>=1.2.4, <=1.5.0|
| 0.12.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.5.0|
| 0.11.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.5.0|
| 0.10.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.5.0|
| 0.9.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.5.0|
| 0.8.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.5.0|
| 0.7.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.5.0|
| 0.6.0               | mmdet>=2.4.0, <=2.11.0 | Not required  | mmcv-full>=1.1.3, <=1.2.0|
31
| 0.5.0               | 2.3.0                  | Not required  | mmcv-full==1.0.5|
zhangwenwei's avatar
Doc  
zhangwenwei committed
32

twang's avatar
twang committed
33
# Installation
zhangwenwei's avatar
Doc  
zhangwenwei committed
34

twang's avatar
twang committed
35
## Install MMDetection3D
zhangwenwei's avatar
Doc  
zhangwenwei committed
36

37
**a. Create a conda virtual environment and activate it.**
zhangwenwei's avatar
zhangwenwei committed
38

twang's avatar
twang committed
39
40
41
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
zhangwenwei's avatar
Doc  
zhangwenwei committed
42
43
```

44
**b. Install PyTorch and torchvision following the [official instructions](https://pytorch.org/).**
Wenwei Zhang's avatar
Wenwei Zhang committed
45

twang's avatar
twang committed
46
47
```shell
conda install pytorch torchvision -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
48
49
```

twang's avatar
twang committed
50
51
Note: Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
Wenwei Zhang's avatar
Wenwei Zhang committed
52

53
`E.g. 1` If you have CUDA 10.1 installed under `/usr/local/cuda` and would like to install
twang's avatar
twang committed
54
PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.
Wenwei Zhang's avatar
Wenwei Zhang committed
55

twang's avatar
twang committed
56
```python
57
conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
58
59
```

twang's avatar
twang committed
60
61
`E.g. 2` If you have CUDA 9.2 installed under `/usr/local/cuda` and would like to install
PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.
zhangwenwei's avatar
zhangwenwei committed
62

twang's avatar
twang committed
63
64
```python
conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
wangtai's avatar
wangtai committed
65
66
```

67
If you build PyTorch from source instead of installing the prebuilt package,
twang's avatar
twang committed
68
you can use more CUDA versions such as 9.0.
69

70
**c. Install [MMCV](https://mmcv.readthedocs.io/en/latest/).**
xiliu8006's avatar
xiliu8006 committed
71
*mmcv-full* is necessary since MMDetection3D relies on MMDetection, CUDA ops in *mmcv-full* are required.
zhangwenwei's avatar
Doc  
zhangwenwei committed
72

73
`e.g.` The pre-build *mmcv-full* could be installed by running: (available versions could be found [here](https://mmcv.readthedocs.io/en/latest/#install-with-pip))
zhangwenwei's avatar
zhangwenwei committed
74

Ziyi Wu's avatar
Ziyi Wu committed
75
```shell
xiliu8006's avatar
xiliu8006 committed
76
77
78
79
80
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```

Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example, to install the latest `mmcv-full` with `CUDA 11` and `PyTorch 1.7.0`, use the following command:

twang's avatar
twang committed
81
```shell
xiliu8006's avatar
xiliu8006 committed
82
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
twang's avatar
twang committed
83
```
zhangwenwei's avatar
zhangwenwei committed
84

xiliu8006's avatar
xiliu8006 committed
85
See [here](https://github.com/open-mmlab/mmcv#install-with-pip) for different versions of MMCV compatible to different PyTorch and CUDA versions.
twang's avatar
twang committed
86
Optionally, you could also build the full version from source:
zhangwenwei's avatar
zhangwenwei committed
87

twang's avatar
twang committed
88
```shell
xiliu8006's avatar
xiliu8006 committed
89
90
91
92
93
94
95
96
97
98
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
cd ..
```

Or directly run

```shell
pip install mmcv-full
twang's avatar
twang committed
99
```
zhangwenwei's avatar
zhangwenwei committed
100

101
**d. Install [MMDetection](https://github.com/open-mmlab/mmdetection).**
zhangwenwei's avatar
zhangwenwei committed
102

twang's avatar
twang committed
103
```shell
hjin2902's avatar
hjin2902 committed
104
pip install mmdet==2.14.0
twang's avatar
twang committed
105
```
zhangwenwei's avatar
zhangwenwei committed
106

twang's avatar
twang committed
107
Optionally, you could also build MMDetection from source in case you want to modify the code:
zhangwenwei's avatar
zhangwenwei committed
108
109

```shell
twang's avatar
twang committed
110
111
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
hjin2902's avatar
hjin2902 committed
112
git checkout v2.14.0  # switch to v2.14.0 branch
twang's avatar
twang committed
113
114
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
zhangwenwei's avatar
zhangwenwei committed
115
116
```

117
118
119
**e. Install [MMSegmentation](https://github.com/open-mmlab/mmsegmentation).**

```shell
hjin2902's avatar
hjin2902 committed
120
pip install mmsegmentation==0.14.1
121
122
123
124
125
126
127
```

Optionally, you could also build MMSegmentation from source in case you want to modify the code:

```shell
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
hjin2902's avatar
hjin2902 committed
128
git checkout v0.14.1  # switch to v0.14.1 branch
129
130
131
132
pip install -e .  # or "python setup.py develop"
```

**f. Clone the MMDetection3D repository.**
zhangwenwei's avatar
Doc  
zhangwenwei committed
133

twang's avatar
twang committed
134
135
136
137
```shell
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
```
zhangwenwei's avatar
zhangwenwei committed
138

139
**g.Install build requirements and then install MMDetection3D.**
zhangwenwei's avatar
zhangwenwei committed
140

twang's avatar
twang committed
141
142
143
```shell
pip install -v -e .  # or "python setup.py develop"
```
zhangwenwei's avatar
zhangwenwei committed
144

twang's avatar
twang committed
145
Note:
zhangwenwei's avatar
Doc  
zhangwenwei committed
146

twang's avatar
twang committed
147
148
1. The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models.
It is recommended that you run step d each time you pull some updates from github. If C++/CUDA codes are modified, then this step is compulsory.
zhangwenwei's avatar
Doc  
zhangwenwei committed
149

twang's avatar
twang committed
150
    > Important: Be sure to remove the `./build` folder if you reinstall mmdet with a different CUDA/PyTorch version.
zhangwenwei's avatar
zhangwenwei committed
151

twang's avatar
twang committed
152
153
154
155
156
    ```shell
    pip uninstall mmdet3d
    rm -rf ./build
    find . -name "*.so" | xargs rm
    ```
zhangwenwei's avatar
zhangwenwei committed
157

158
2. Following the above instructions, MMDetection3D is installed on `dev` mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number).
zhangwenwei's avatar
zhangwenwei committed
159

twang's avatar
twang committed
160
161
3. If you would like to use `opencv-python-headless` instead of `opencv-python`,
you can install it before installing MMCV.
zhangwenwei's avatar
zhangwenwei committed
162

twang's avatar
twang committed
163
4. Some dependencies are optional. Simply running `pip install -v -e .` will only install the minimum runtime requirements. To use optional dependencies like `albumentations` and `imagecorruptions` either install them manually with `pip install -r requirements/optional.txt` or specify desired extras when calling `pip` (e.g. `pip install -v -e .[optional]`). Valid keys for the extras field are: `all`, `tests`, `build`, and `optional`.
zhangwenwei's avatar
zhangwenwei committed
164

twang's avatar
twang committed
165
5. The code can not be built for CPU only environment (where CUDA isn't available) for now.
zhangwenwei's avatar
zhangwenwei committed
166

twang's avatar
twang committed
167
## Another option: Docker Image
Wenwei Zhang's avatar
Wenwei Zhang committed
168

twang's avatar
twang committed
169
We provide a [Dockerfile](https://github.com/open-mmlab/mmdetection3d/blob/master/docker/Dockerfile) to build an image.
Wenwei Zhang's avatar
Wenwei Zhang committed
170

twang's avatar
twang committed
171
172
173
174
```shell
# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmdetection3d docker/
```
Wenwei Zhang's avatar
Wenwei Zhang committed
175

twang's avatar
twang committed
176
Run it with
Wenwei Zhang's avatar
Wenwei Zhang committed
177

twang's avatar
twang committed
178
179
180
```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d
```
Wenwei Zhang's avatar
Wenwei Zhang committed
181

twang's avatar
twang committed
182
## A from-scratch setup script
Wenwei Zhang's avatar
Wenwei Zhang committed
183

184
Here is a full script for setting up MMdetection3D with conda.
Wenwei Zhang's avatar
Wenwei Zhang committed
185

twang's avatar
twang committed
186
187
188
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
Wenwei Zhang's avatar
Wenwei Zhang committed
189

190
# install latest PyTorch prebuilt with the default prebuilt CUDA version (usually the latest)
twang's avatar
twang committed
191
conda install -c pytorch pytorch torchvision -y
Wenwei Zhang's avatar
Wenwei Zhang committed
192

twang's avatar
twang committed
193
194
# install mmcv
pip install mmcv-full
liyinhao's avatar
liyinhao committed
195

twang's avatar
twang committed
196
197
# install mmdetection
pip install git+https://github.com/open-mmlab/mmdetection.git
liyinhao's avatar
liyinhao committed
198

199
200
201
# install mmsegmentation
pip install git+https://github.com/open-mmlab/mmsegmentation.git

twang's avatar
twang committed
202
203
204
205
# install mmdetection3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -v -e .
zhangwenwei's avatar
zhangwenwei committed
206
```
liyinhao's avatar
liyinhao committed
207

twang's avatar
twang committed
208
209
210
## Using multiple MMDetection3D versions

The train and test scripts already modify the `PYTHONPATH` to ensure the script use the MMDetection3D in the current directory.
liyinhao's avatar
liyinhao committed
211

twang's avatar
twang committed
212
213
214
215
To use the default MMDetection3D installed in the environment rather than that you are working with, you can remove the following line in those scripts

```shell
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
liyinhao's avatar
liyinhao committed
216
217
```

twang's avatar
twang committed
218
# Verification
liyinhao's avatar
liyinhao committed
219

220
## Verify with point cloud demo
zhangwenwei's avatar
Doc  
zhangwenwei committed
221

222
We provide several demo scripts to test a single sample. Pre-trained models can be downloaded from [model zoo](model_zoo.md). To test a single-modality 3D detection on point cloud scenes:
zhangwenwei's avatar
Doc  
zhangwenwei committed
223
224

```shell
wuyuefeng's avatar
Demo  
wuyuefeng committed
225
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
zhangwenwei's avatar
Doc  
zhangwenwei committed
226
227
228
229
230
```

Examples:

```shell
231
python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
zhangwenwei's avatar
zhangwenwei committed
232
```
233

yinchimaoliang's avatar
yinchimaoliang committed
234
If you want to input a `ply` file, you can use the following function and convert it to `bin` format. Then you can use the converted `bin` file to generate demo.
235
Note that you need to install `pandas` and `plyfile` before using this script. This function can also be used for data preprocessing for training ```ply data```.
236

yinchimaoliang's avatar
yinchimaoliang committed
237
238
239
240
241
```python
import numpy as np
import pandas as pd
from plyfile import PlyData

242
def convert_ply(input_path, output_path):
yinchimaoliang's avatar
yinchimaoliang committed
243
244
245
246
247
248
249
250
251
252
    plydata = PlyData.read(input_path)  # read file
    data = plydata.elements[0].data  # read data
    data_pd = pd.DataFrame(data)  # convert to DataFrame
    data_np = np.zeros(data_pd.shape, dtype=np.float)  # initialize array to store data
    property_names = data[0].dtype.names  # read names of properties
    for i, name in enumerate(
            property_names):  # read data by property
        data_np[:, i] = data_pd[name]
    data_np.astype(np.float32).tofile(output_path)
```
253

yinchimaoliang's avatar
yinchimaoliang committed
254
Examples:
zhangwenwei's avatar
zhangwenwei committed
255

yinchimaoliang's avatar
yinchimaoliang committed
256
257
258
```python
convert_ply('./test.ply', './test.bin')
```
zhangwenwei's avatar
zhangwenwei committed
259

260
If you have point clouds in other format (`off`, `obj`, etc.), you can use `trimesh` to convert them into `ply`.
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

```python
import trimesh

def to_ply(input_path, output_path, original_type):
    mesh = trimesh.load(input_path, file_type=original_type)  # read file
    mesh.export(output_path, file_type='ply')  # convert to ply
```

Examples:

```python
to_ply('./test.obj', './test.ply', 'obj')
```

276
More demos about single/multi-modality and indoor/outdoor 3D detection can be found in [demo](demo.md).
277

twang's avatar
twang committed
278
## High-level APIs for testing point clouds
zhangwenwei's avatar
zhangwenwei committed
279

twang's avatar
twang committed
280
### Synchronous interface
Ziyi Wu's avatar
Ziyi Wu committed
281

liyinhao's avatar
liyinhao committed
282
Here is an example of building the model and test given point clouds.
zhangwenwei's avatar
zhangwenwei committed
283
284

```python
285
from mmdet3d.apis import init_model, inference_detector
zhangwenwei's avatar
zhangwenwei committed
286

liyinhao's avatar
liyinhao committed
287
288
config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth'
zhangwenwei's avatar
zhangwenwei committed
289
290

# build the model from a config file and a checkpoint file
291
model = init_model(config_file, checkpoint_file, device='cuda:0')
zhangwenwei's avatar
zhangwenwei committed
292
293

# test a single image and show the results
liyinhao's avatar
liyinhao committed
294
295
296
297
point_cloud = 'test.bin'
result, data = inference_detector(model, point_cloud)
# visualize the results and save the results in 'results' folder
model.show_results(data, result, out_dir='results')
zhangwenwei's avatar
zhangwenwei committed
298
```