README_zh-CN.md 21.6 KB
Newer Older
1
2
<div align="center">
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab 官网</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab 开放平台</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
20

Jingwei Zhang's avatar
Jingwei Zhang committed
21
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/zh_CN/latest/)
22
23
24
25
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>

48
**新闻**
Tai-Wang's avatar
Tai-Wang committed
49

50
51
**我们将 `1.1` 分支重命名为 `main` 并将默认分支从 `master` 切换到 `main`。我们鼓励用户迁移到最新版本,请参考 [迁移指南](docs/en/migration.md) 以了解更多细节。**

Sun Jiahao's avatar
Sun Jiahao committed
52
**v1.1.1** 版本已于 2023.5.30 发布
Jingwei Zhang's avatar
Jingwei Zhang committed
53

Sun Jiahao's avatar
Sun Jiahao committed
54
我们在 SemanticKITTI 上构建了一个全面的点云语义分割基准,包括 Cylinder3D 、 MinkUNet 和 SPVCNN 方法。其中,改进后的 MinkUNetv2 在验证集上可以达到 70.3 mIoU 。我们还在 projects 中支持了 BEVFusion 的训练和全新的 3D 占有网格预测网络 TPVFormer 。更多关于3D感知的新功能正在进行中。请继续关注!
55
56
57
58
59

## 简介

[English](README.md) | 简体中文

VVsssssk's avatar
VVsssssk committed
60
主分支代码目前支持 PyTorch 1.6 以上的版本。
61

62
MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代面向 3D 检测的平台。它是 OpenMMlab 项目的一部分,这个项目由香港中文大学多媒体实验室和商汤科技联合发起。
63
64
65
66
67
68
69
70
71
72
73

![demo image](resources/mmdet3d_outdoor_demo.gif)

### 主要特性

- **支持多模态/单模态的检测器**

  支持多模态/单模态检测器,包括 MVXNet,VoteNet,PointPillars 等。

- **支持户内/户外的数据集**

74
  支持室内/室外的 3D 检测数据集,包括 ScanNet,SUNRGB-D,Waymo,nuScenes,Lyft,KITTI。
75
  对于 nuScenes 数据集,我们也支持 [nuImages 数据集](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages)
76
77
78

- **与 2D 检测器的自然整合**

79
  [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的 **300+ 个模型,40+ 的论文算法**,和相关模块都可以在此代码库中训练或使用。
80
81
82

- **性能高**

83
  训练速度比其他代码库更快。下表可见主要的对比结果。更多的细节可见[基准测评文档](./docs/zh_cn/notes/benchmarks.md)。我们对比了每秒训练的样本数(值越高越好)。其他代码库不支持的模型被标记为 `✗`
84

85
86
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
87
88
89
90
91
  |       VoteNet       |      358      |                          ✗                           |                           77                           |                      ✗                      |
  |  PointPillars-car   |      141      |                          ✗                           |                           ✗                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ✗                            |                      ✗                      |
  |       SECOND        |      40       |                          30                          |                           ✗                            |                      ✗                      |
  |       Part-A2       |      17       |                          14                          |                           ✗                            |                      ✗                      |
92

93
[MMDetection](https://github.com/open-mmlab/mmdetection)[MMCV](https://github.com/open-mmlab/mmcv) 一样,MMDetection3D 也可以作为一个库去支持各式各样的项目。
94
95
96
97
98
99
100

## 开源许可证

该项目采用 [Apache 2.0 开源许可证](LICENSE)

## 更新日志

101
我们在 2023.1.7 发布了 **1.1.0rc3** 版本。
Tai-Wang's avatar
Tai-Wang committed
102

103
更多细节和版本发布历史可以参考 [changelog.md](docs/zh_cn/notes/changelog.md)
104
105
106

## 基准测试和模型库

Wenhao Wu's avatar
Wenhao Wu committed
107
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
<div align="center">
  <b>模块组件</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>主干网络</b>
      </td>
      <td>
        <b>检测头</b>
      </td>
      <td>
        <b>特性</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
133
        <li>MinkResNet (CVPR'2019)</li>
134
        <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
135
        <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>算法模型</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
161
        <b>激光雷达 3D 目标检测</b>
162
163
      </td>
      <td>
164
        <b>相机 3D 目标检测</b>
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
      </td>
      <td>
        <b>多模态 3D 目标检测</b>
      </td>
      <td>
        <b>3D 语义分割</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>室外</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
181
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
182
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
183
184
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
185
186
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
            <li><a href="projects/CenterFormer">CenterFormer (ECCV'2022)</a></li>
187
188
189
190
191
192
        </ul>
        <li><b>室内</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
193
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
194
            <li><a href="projects/TR3D">TR3D (ArXiv'2023)</a></li>
195
196
197
198
199
200
201
202
203
204
      </ul>
      </td>
      <td>
        <li><b>室外</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
205
206
          <li><a href="projects/DETR3D">DETR3D (CoRL'2021)</a></li>
          <li><a href="projects/PETR">PETR (ECCV'2022)</a></li>
207
        </ul>
208
209
210
211
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
212
213
214
215
216
      </td>
      <td>
        <li><b>室外</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
217
          <li><a href="projects/BEVFusion">BEVFusion (ICRA'2023)</a></li>
218
219
220
221
222
223
224
        </ul>
        <li><b>室内</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
225
226
        <li><b>室外</b></li>
        <ul>
227
          <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
228
          <li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
229
          <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
230
          <li><a href="projects/TPVFormer">TPVFormer (CVPR'2023)</a></li>
231
        </ul>
232
233
234
235
236
237
238
239
240
241
242
243
244
        <li><b>室内</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|               | ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :----: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
|    SECOND     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| PointPillars  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|  FreeAnchor   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|    VoteNet    |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    H3DNet     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     3DSSD     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    Part-A2    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    MVXNet     |   ✓    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  CenterPoint  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|      SSN      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|   ImVoteNet   |   ✓    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCOS3D     |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  PointNet++   |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| Group-Free-3D |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  ImVoxelNet   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    PAConv     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     DGCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✓   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     SMOKE     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|      PGD      |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   MonoFlex    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|    SA-SSD     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCAF3D     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    PV-RCNN    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  Cylinder3D   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✓      |    ✗     |
|   MinkUNet    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|    SPVCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|   BEVFusion   |   ✗    |   ✗    |   ✓    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| CenterFormer  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     TR3D      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    DETR3D     |   ✓    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     PETR      |   ✗    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   TPVFormer   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
280

281
**注意:**[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的基于 2D 检测的 **300+ 个模型,40+ 的论文算法**在 MMDetection3D 中都可以被训练或使用。
282
283
284

## 安装

Xiang Xu's avatar
Xiang Xu committed
285
请参考[快速入门文档](docs/zh_cn/get_started.md)进行安装。
286
287
288

## 快速入门

Xiang Xu's avatar
Xiang Xu committed
289
请参考[快速入门文档](docs/zh_cn/get_started.md)学习 MMDetection3D 的基本使用。我们为新手提供了分别针对[已有数据集](docs/zh_cn/user_guides/train_test.md)[新数据集](docs/zh_cn/user_guides/2_new_data_model.md)的使用指南。我们也提供了一些进阶教程,内容覆盖了[学习配置文件](docs/zh_cn/user_guides/config.md)[增加自定义数据集](docs/zh_cn/advanced_guides/customize_dataset.md)[设计新的数据预处理流程](docs/zh_cn/user_guides/data_pipeline.md)[增加自定义模型](docs/zh_cn/advanced_guides/customize_models.md)[增加自定义的运行时配置](docs/zh_cn/advanced_guides/customize_runtime.md)[Waymo 数据集](docs/zh_cn/advanced_guides/datasets/waymo_det.md)
VVsssssk's avatar
VVsssssk committed
290

VVsssssk's avatar
VVsssssk committed
291
请参考 [FAQ](docs/zh_cn/notes/faq.md) 查看一些常见的问题与解答。在升级 MMDetection3D 的版本时,请查看[兼容性文档](docs/zh_cn/notes/compatibility.md)以知晓每个版本引入的不与之前版本兼容的更新。
VVsssssk's avatar
VVsssssk committed
292

293
294
295
296
297
298
## 引用

如果你觉得本项目对你的研究工作有所帮助,请参考如下 bibtex 引用 MMdetection3D

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
299
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
300
301
302
303
304
305
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

306
307
308
309
310
311
312
## 贡献指南

我们感谢所有的贡献者为改进和提升 MMDetection3D 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。

## 致谢

MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新的 3D 检测模型。
313
314
315

## OpenMMLab 的其他项目

VVsssssk's avatar
VVsssssk committed
316
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库
317
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
xiangxu-0103's avatar
xiangxu-0103 committed
318
- [MMEval](https://github.com/open-mmlab/mmeval): 统一开放的跨框架算法评测库
Wenhao Wu's avatar
Wenhao Wu committed
319
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
320
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab 深度学习预训练工具箱
321
322
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
323
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
324
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准
325
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
326
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
327
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
ChaimZhu's avatar
ChaimZhu committed
328
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
329
330
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
331
332
333
334
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
335
- [MMagic](https://github.com/open-mmlab/mmagic): OpenMMLab 新一代人工智能内容生成(AIGC)工具箱
336
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
337
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
338
339
340
341
342
343

## 欢迎加入 OpenMMLab 社区

扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=aCvMxdr3)

<div align="center">
344
<img src="https://user-images.githubusercontent.com/25839884/205870927-39f4946d-8751-4219-a4c0-740117558fd7.jpg" height="400" />  <img src="https://user-images.githubusercontent.com/25839884/203904835-62392033-02d4-4c73-a68c-c9e4c1e2b07f.jpg" height="400" />
345
346
347
348
349
350
351
352
353
354
355
356
</div>

我们会在 OpenMMLab 社区为大家

- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台

干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬