changelog.md 26.7 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
## Changelog

Tai-Wang's avatar
Tai-Wang committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
### v0.17.1 (1/10/2021)

#### Highlights

- Support a faster but non-deterministic version of hard voxelization
- Completion of dataset tutorials and the Chinese documentation
- Improved the aesthetics of the documentation format

#### Improvements

- Add Chinese Documentation for training on customized datasets and designing customized models (#729, #820)
- Support a faster but non-deterministic version of hard voxelization (#904)
- Update paper titles and code details for metafiles (#917)
- Add a tutorial for KITTI dataset (#953)
- Use Pytorch sphinx theme to improve the format of documentation (#958)
- Use the docker to accelerate CI (#971)

#### Bug Fixes

- Fix the sphinx version used in the documentation (#902)
- Fix a dynamic scatter bug that discards the first voxel by mistake when all input points are valid (#915)
- Fix the inconsistent variable names used in the [unit test](https://github.com/open-mmlab/mmdetection3d/blob/master/tests/test_models/test_voxel_encoder/test_voxel_generator.py) for voxel generater (#919)
- Upgrade to use `build_prior_generator` to replace the legacy `build_anchor_generator` (#941)
- Fix a minor bug caused by a too small difference set in the FreeAnchor Head (#944)

#### Contributors

A total of 8 developers contributed to this release.

@DCNSW, @zhanggefan, @mickeyouyou, @ZCMax, @wHao-Wu, @tojimahammatov, @xiliu8006, @Tai-Wang
Tai-Wang's avatar
Tai-Wang committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

### v0.17.0 (1/9/2021)

#### Compatibility

- Unify the camera keys for consistent transformation between coodinate systems on different datasets. The modification change the key names to `lidar2img`, `depth2img`, `cam2img`, etc. for easier understanding. Customized codes using legacy keys may be influenced.
- The next release will begin to move files of CUDA ops to [MMCV](https://github.com/open-mmlab/mmcv). It will influence the way to import related functions. We will not break the compatibility but will raise a warning first and please prepare to migrate it.

#### Highlights

- Support 3D object detection on the S3DIS dataset
- Support compilation on Windows
- Full benchmark for PAConv on S3DIS
- Further enhancement for documentation, especially on the Chinese documentation

#### New Features

- Support 3D object detection on the S3DIS dataset (#835)

#### Improvements

- Support point sampling based on distance metric (#667, #840)
- Update PointFusion to support unified camera keys (#791)
- Add Chinese documentation for customized dataset (#792), data pipeline (#827), customized runtime (#829), 3D Detection on ScanNet (#836), nuScenes (#854) and Waymo (#859)
- Unify camera keys used in transformation between different systems (#805)
- Add a script to support benchmark regression (#808)
- Benchmark PAConvCUDA on S3DIS (#847)
- Add a tutorial for 3D detection on the Lyft dataset (#849)
- Support to download pdf and epub documentation (#850)
- Change the `repeat` setting in Group-Free-3D configs to reduce training epochs (#855)

#### Bug Fixes

- Fix compiling errors on Windows (#766)
- Fix the deprecated nms setting in the ImVoteNet config (#828)
- Use the latest `wrap_fp16_model` import from mmcv (#861)
- Remove 2D annotations generation on Lyft (#867)
- Update index files for the Chinese documentation to be consistent with the English version (#873)
- Fix the nested list transpose in the CenterPoint head (#879)
- Fix deprecated pretrained model loading for RegNet (#889)

#### Contributors

A total of 11 developers contributed to this release.

@THU17cyz, @wHao-Wu, @wangruohui, @Wuziyi616, @filaPro, @ZwwWayne, @Tai-Wang, @DCNSW, @xieenze, @robin-karlsson0, @ZCMax

Tai-Wang's avatar
Tai-Wang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
### v0.16.0 (1/8/2021)

#### Compatibility

- Remove the rotation and dimension hack in the monocular 3D detection on nuScenes by applying corresponding transformation in the pre-processing and post-processing. The modification only influences nuScenes coco-style json files. Please re-run the data preparation scripts if necessary. See more details in the PR #744.
- Add a new pre-processing module for the ScanNet dataset in order to support multi-view detectors. Please run the updated scripts to extract the RGB data and its annotations. See more details in the PR #696.

#### Highlights

- Support to use [MIM](https://github.com/open-mmlab/mim) with pip installation
- Support PAConv [models and benchmarks](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/paconv) on S3DIS
- Enhance the documentation especially on dataset tutorials

#### New Features

- Support RGB images on ScanNet for multi-view detectors (#696)
- Support FLOPs and number of parameters calculation (#736)
- Support to use [MIM](https://github.com/open-mmlab/mim) with pip installation (#782)
- Support PAConv models and benchmarks on the S3DIS dataset (#783, #809)

#### Improvements

- Refactor Group-Free-3D to make it inherit BaseModule from MMCV (#704)
- Modify the initialization methods of FCOS3D to be consistent with the refactored approach (#705)
- Benchmark the Group-Free-3D [models](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/groupfree3d) on ScanNet (#710)
- Add Chinese Documentation for Getting Started (#725), FAQ (#730), Model Zoo (#735), Demo (#745), Quick Run (#746), Data Preparation (#787) and Configs (#788)
- Add documentation for semantic segmentation on ScanNet and S3DIS (#743, #747, #806, #807)
- Add a parameter `max_keep_ckpts` to limit the maximum number of saved Group-Free-3D checkpoints (#765)
- Add documentation for 3D detection on SUN RGB-D and nuScenes (#770, #793)
- Remove mmpycocotools in the Dockerfile (#785)

#### Bug Fixes

- Fix versions of OpenMMLab dependencies (#708)
- Convert `rt_mat` to `torch.Tensor` in coordinate transformation for compatibility (#709)
- Fix the `bev_range` initialization in `ObjectRangeFilter` according to the `gt_bboxes_3d` type (#717)
- Fix Chinese documentation and incorrect doc format due to the incompatible Sphinx version (#718)
- Fix a potential bug when setting `interval == 1` in [analyze_logs.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/analysis_tools/analyze_logs.py) (#720)
- Update the structure of Chinese Documentation (#722)
- Fix FCOS3D FPN BC-Breaking caused by the code refactoring in MMDetection (#739)
- Fix wrong `in_channels` when `with_distance=True` in the [Dynamic VFE Layers](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/voxel_encoders/voxel_encoder.py#L87) (#749)
- Fix the dimension and yaw hack of FCOS3D on nuScenes (#744, #794, #795, #818)
- Fix the missing default `bbox_mode` in the `show_multi_modality_result` (#825)

#### Contributors

A total of 12 developers contributed to this release.

@yinchimaoliang, @gopi231091, @filaPro, @ZwwWayne, @ZCMax, @hjin2902, @wHao-Wu, @Wuziyi616, @xiliu8006, @THU17cyz, @DCNSW, @Tai-Wang


hjin2902's avatar
hjin2902 committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
### v0.15.0 (1/7/2021)

#### Compatibility

In order to fix the problem that the priority of EvalHook is too low, all hook priorities have been re-adjusted in 1.3.8, so MMDetection 2.14.0 needs to rely on the latest MMCV 1.3.8 version. For related information, please refer to [#1120](https://github.com/open-mmlab/mmcv/pull/1120), for related issues, please refer to [#5343](https://github.com/open-mmlab/mmdetection/issues/5343).

#### Highlights

- Support [PAConv](https://arxiv.org/abs/2103.14635)
- Support monocular/multi-view 3D detector [ImVoxelNet](https://arxiv.org/abs/2106.01178) on KITTI
- Support Transformer-based 3D detection method [Group-Free-3D](https://arxiv.org/abs/2104.00678) on ScanNet
- Add documentation for tasks including LiDAR-based 3D detection, vision-only 3D detection and point-based 3D semantic segmentation
- Add dataset documents like ScanNet

#### New Features

- Support Group-Free-3D on ScanNet (#539)
- Support PAConv modules (#598, #599)
- Support ImVoxelNet on KITTI (#627, #654)

#### Improvements

- Add unit tests for pipeline functions `LoadImageFromFileMono3D`, `ObjectNameFilter` and `ObjectRangeFilter` (#615)
- Enhance [IndoorPatchPointSample](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/transforms_3d.py) (#617)
- Refactor model initialization methods based MMCV (#622)
- Add Chinese docs (#629)
- Add documentation for LiDAR-based 3D detection (#642)
- Unify intrinsic and extrinsic matrices for all datasets (#653)
- Add documentation for point-based 3D semantic segmentation (#663)
- Add documentation of ScanNet for 3D detection (#664)
- Refine docs for tutorials (#666)
- Add documentation for vision-only 3D detection (#669)
- Refine docs for Quick Run and Useful Tools (#686)


#### Bug Fixes

- Fix the bug of [BackgroundPointsFilter](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/transforms_3d.py) using the bottom center of ground truth (#609)
- Fix [LoadMultiViewImageFromFiles](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/loading.py) to unravel stacked multi-view images to list to be consistent with DefaultFormatBundle (#611)
- Fix the potential bug in [analyze_logs](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/analysis_tools/analyze_logs.py) when the training resumes from a checkpoint or is stopped before evaluation (#634)
- Fix test commands in docs and make some refinements (#635)
- Fix wrong config paths in unit tests (#641)


hjin2902's avatar
hjin2902 committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
### v0.14.0 (1/6/2021)

#### Highlights
- Support the point cloud segmentation method [PointNet++](https://arxiv.org/abs/1706.02413)

#### New Features

- Support PointNet++ (#479, #528, #532, #541)
- Support RandomJitterPoints transform for point cloud segmentation (#584)
- Support RandomDropPointsColor transform for point cloud segmentation (#585)

#### Improvements

- Move the point alignment of ScanNet from data pre-processing to pipeline (#439, #470)
- Add compatibility document to provide detailed descriptions of BC-breaking changes (#504)
- Add MMSegmentation installation requirement (#535)
- Support points rotation even without bounding box in GlobalRotScaleTrans for point cloud segmentaiton (#540)
- Support visualization of detection results and dataset browse for nuScenes Mono-3D dataset (#542, #582)
- Support faster implementation of KNN (#586)
- Support RegNetX models on Lyft dataset (#589)
hjin2902's avatar
hjin2902 committed
195
- Remove a useless parameter `label_weight` from segmentation datasets including `Custom3DSegDataset`, `ScanNetSegDataset` and `S3DISSegDataset` (#607)
hjin2902's avatar
hjin2902 committed
196
197
198
199
200
201
202
203
204

#### Bug Fixes
- Fix a corrupted lidar data file in Lyft dataset in [data_preparation](https://github.com/open-mmlab/mmdetection3d/tree/master/docs/data_preparation.md) (#546)
- Fix evaluation bugs in nuScenes and Lyft dataset (#549)
- Fix converting points between coordinates with specific transformation matrix in the [coord_3d_mode.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/bbox/structures/coord_3d_mode.py) (#556)
- Support PointPillars models on Lyft dataset (#578)
- Fix the bug of demo with pre-trained VoteNet model on ScanNet (#600)


hjin2902's avatar
hjin2902 committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
### v0.13.0 (1/5/2021)

#### Highlights
- Support a monocular 3D detection method [FCOS3D](https://arxiv.org/abs/2104.10956)
- Support ScanNet and S3DIS semantic segmentation dataset
- Enhancement of visualization tools for dataset browsing and demos, including support of visualization for multi-modality data and point cloud segmentation.

#### New Features

- Support ScanNet semantic segmentation dataset (#390)
- Support monocular 3D detection on nuScenes (#392)
- Support multi-modality visualization (#405)
- Support nuimages visualization (#408)
- Support monocular 3D detection on KITTI (#415)
- Support online visualization of semantic segmentation results (#416)
- Support ScanNet test results submission to online benchmark (#418)
- Support S3DIS data pre-processing and dataset class (#433)
- Support FCOS3D (#436, #442, #482, #484)
- Support dataset browse for multiple types of datasets (#467)
- Adding paper-with-code (PWC) metafile for each model in the model zoo (#485)

#### Improvements

- Support dataset browsing for SUNRGBD, ScanNet or KITTI points and detection results (#367)
- Add the pipeline to load data using file client (#430)
- Support to customize the type of runner (#437)
- Make pipeline functions process points and masks simultaneously when sampling points (#444)
- Add waymo unit tests (#455)
- Split the visualization of projecting points onto image from that for only points (#480)
- Efficient implementation of PointSegClassMapping (#489)
- Use the new model registry from mmcv (#495)

#### Bug Fixes

- Fix Pytorch 1.8 Compilation issue in the [scatter_points_cuda.cu](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) (#404)
- Fix [dynamic_scatter](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) errors triggered by empty point input (#417)
- Fix the bug of missing points caused by using break incorrectly in the voxelization (#423)
- Fix the missing `coord_type` in the waymo dataset [config](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/waymoD5-3d-3class.py) (#441)
- Fix errors in four unittest functions of [configs](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py), [test_detectors.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tests/test_models/test_detectors.py), [test_heads.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tests/test_models/test_heads/test_heads.py) (#453)
- Fix 3DSSD training errors and simplify configs (#462)
- Clamp 3D votes projections to image boundaries in ImVoteNet (#463)
- Update out-of-date names of pipelines in the [config](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py) of pointpillars benchmark (#474)
- Fix the lack of a placeholder when unpacking RPN targets in the [h3d_bbox_head.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py) (#508)
- Fix the incorrect value of `K` when creating pickle files for SUN RGB-D (#511)

twang's avatar
twang committed
250
251
252
253
254
### v0.12.0 (1/4/2021)

#### Highlights

- Support a new multi-modality method [ImVoteNet](https://arxiv.org/abs/2001.10692).
255
- Support PyTorch 1.7 and 1.8
twang's avatar
twang committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
- Refactor the structure of tools and [train.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/train.py)/[test.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/test.py)

#### New Features

- Support LiDAR-based semantic segmentation metrics (#332)
- Support [ImVoteNet](https://arxiv.org/abs/2001.10692) (#352, #384)
- Support the KNN GPU operation (#360, #371)

#### Improvements

- Add FAQ for common problems in the documentation (#333)
- Refactor the structure of tools (#339)
- Refactor [train.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/train.py) and [test.py](https://github.com/open-mmlab/mmdetection3d/blob/master/tools/test.py) (#343)
- Support demo on nuScenes (#353)
- Add 3DSSD checkpoints (#359)
- Update the Bibtex of CenterPoint (#368)
- Add citation format and reference to other OpenMMLab projects in the README (#374)
- Upgrade the mmcv version requirements (#376)
- Add numba and numpy version requirements in FAQ (#379)
- Avoid unnecessary for-loop execution of vfe layer creation (#389)
- Update SUNRGBD dataset documentation to stress the requirements for training ImVoteNet (#391)
- Modify vote head to support 3DSSD (#396)

hjin2902's avatar
hjin2902 committed
279
280
281
282
283
284
285
286
287
#### Bug Fixes

- Fix missing keys `coord_type` in database sampler config (#345)
- Rename H3DNet configs (#349)
- Fix CI by using ubuntu 18.04 in github workflow (#350)
- Add assertions to avoid 4-dim points being input to [points_in_boxes](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/roiaware_pool3d/points_in_boxes.py) (#357)
- Fix the SECOND results on Waymo in the corresponding [README](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) (#363)
- Fix the incorrect adopted pipeline when adding val to workflow (#370)
- Fix a potential bug when indices used in the backwarding in ThreeNN (#377)
288
- Fix a compilation error triggered by [scatter_points_cuda.cu](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) in PyTorch 1.7 (#393)
hjin2902's avatar
hjin2902 committed
289

twang's avatar
twang committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
### v0.11.0 (1/3/2021)

#### Highlights

- Support more friendly visualization interfaces based on open3d
- Support a faster and more memory-efficient implementation of DynamicScatter
- Refactor unit tests and details of configs

#### New Features

- Support new visualization methods based on open3d (#284, #323)

#### Improvements

- Refactor unit tests (#303)
- Move the key `train_cfg` and `test_cfg` into the model configs (#307)
306
- Update [README](https://github.com/open-mmlab/mmdetection3d/blob/master/README.md/) with [Chinese version](https://github.com/open-mmlab/mmdetection3d/blob/master/README_zh-CN.md/) and [instructions for getting started](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/getting_started.md/). (#310, #316)
twang's avatar
twang committed
307
308
- Support a faster and more memory-efficient implementation of DynamicScatter (#318, #326)

hjin2902's avatar
hjin2902 committed
309
310
311
312
313
#### Bug Fixes

- Fix an unsupported bias setting in the unit test for centerpoint head (#304)
- Fix errors due to typos in the centerpoint head (#308)
- Fix a minor bug in [points_in_boxes.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/roiaware_pool3d/points_in_boxes.py) when tensors are not in the same device. (#317)
314
- Fix warning of deprecated usages of nonzero during training with PyTorch 1.6 (#330)
hjin2902's avatar
hjin2902 committed
315

twang's avatar
twang committed
316
317
318
319
320
321
322
323
### v0.10.0 (1/2/2021)

#### Highlights

- Preliminary release of API for SemanticKITTI dataset.
- Documentation and demo enhancement for better user experience.
- Fix a number of underlying minor bugs and add some corresponding important unit tests.

hjin2902's avatar
hjin2902 committed
324
325
326
327
328
329
330
331
#### New Features

- Support SemanticKITTI dataset preliminarily (#287)

#### Improvements

- Add tag to README in configurations for specifying different uses (#262)
- Update instructions for evaluation metrics in the documentation (#265)
332
- Add nuImages entry in [README.md](https://github.com/open-mmlab/mmdetection3d/blob/master/README.md/) and gif demo (#266, #268)
hjin2902's avatar
hjin2902 committed
333
334
- Add unit test for voxelization (#275)

twang's avatar
twang committed
335
336
337
338
339
#### Bug Fixes

- Fixed the issue of unpacking size in [furthest_point_sample.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/furthest_point_sample/furthest_point_sample.py) (#248)
- Fix bugs for 3DSSD triggered by empty ground truths (#258)
- Remove models without checkpoints in model zoo statistics of documentation (#259)
340
- Fix some unclear installation instructions in [getting_started.md](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/getting_started.md/) (#269)
twang's avatar
twang committed
341
342
343
344
345
346
- Fix relative paths/links in the documentation (#271)
- Fix a minor bug in [scatter_points_cuda.cu](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) when num_features != 4 (#275)
- Fix the bug about missing text files when testing on KITTI (#278)
- Fix issues caused by inplace modification of tensors in `BaseInstance3DBoxes` (#283)
- Fix log analysis for evaluation and adjust the documentation accordingly (#285)

twang's avatar
twang committed
347
348
349
350
351
352
353
### v0.9.0 (31/12/2020)

#### Highlights

- Documentation refactoring with better structure, especially about how to implement new models and customized datasets.
- More compatible with refactored point structure by bug fixes in ground truth sampling.

hjin2902's avatar
hjin2902 committed
354
355
356
357
#### Improvements

- Documentation refactoring (#242)

twang's avatar
twang committed
358
359
360
361
362
363
364
365
366
#### Bug Fixes

- Fix point structure related bugs in ground truth sampling (#211)
- Fix loading points in ground truth sampling augmentation on nuScenes (#221)
- Fix channel setting in the SeparateHead of CenterPoint (#228)
- Fix evaluation for indoors 3D detection in case of less classes in prediction (#231)
- Remove unreachable lines in nuScenes data converter (#235)
- Minor adjustments of numpy implementation for perspective projection and prediction filtering criterion in KITTI evaluation (#241)

twang's avatar
twang committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
### v0.8.0 (30/11/2020)

#### Highlights

- Refactor points structure with more constructive and clearer implementation.
- Support axis-aligned IoU loss for VoteNet with better performance.
- Update and enhance [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark on Waymo.

#### New Features

- Support axis-aligned IoU loss for VoteNet. (#194)
- Support points structure for consistent processing of all the point related representation. (#196, #204)

#### Improvements

382
- Enhance [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark on Waymo with stronger baselines. (#205)
twang's avatar
twang committed
383
384
- Add model zoo statistics and polish the documentation. (#201)

twang's avatar
twang committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
### v0.7.0 (1/11/2020)

#### Highlights

- Support a new method [SSN](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700579.pdf) with benchmarks on nuScenes and Lyft datasets.
- Update benchmarks for SECOND on Waymo, CenterPoint with TTA on nuScenes and models with mixed precision training on KITTI and nuScenes.
- Support semantic segmentation on nuImages and provide [HTC](https://arxiv.org/abs/1901.07518) models with configurations and performance for reference.

#### New Features

- Modified primitive head which can support the setting on SUN-RGBD dataset (#136)
- Support semantic segmentation and [HTC](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/nuimages) with models for reference on nuImages dataset (#155)
- Support [SSN](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/ssn) on nuScenes and Lyft datasets (#147, #174, #166, #182)
- Support double flip for test time augmentation of CenterPoint with updated benchmark (#143)

#### Improvements

- Update [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark with configurations for reference on Waymo (#166)
- Delete checkpoints on Waymo to comply its specific license agreement (#180)
- Update models and instructions with [mixed precision training](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/fp16) on KITTI and nuScenes (#178)

hjin2902's avatar
hjin2902 committed
406
407
408
409
410
#### Bug Fixes

- Fix incorrect code weights in anchor3d_head when introducing mixed precision training (#173)
- Fix the incorrect label mapping on nuImages dataset (#155)

twang's avatar
twang committed
411
412
413
414
415
### v0.6.1 (11/10/2020)

#### Highlights

- Support mixed precision training of voxel-based methods
416
- Support docker with PyTorch 1.6.0
twang's avatar
twang committed
417
418
419
420
421
422
423
- Update baseline configs and results ([CenterPoint](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/centerpoint) on nuScenes and [PointPillars](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars) on Waymo with full dataset)
- Switch model zoo to download.openmmlab.com

#### New Features

- Support dataset pipeline `VoxelBasedPointSampler` to sample multi-sweep points based on voxelization. (#125)
- Support mixed precision training of voxel-based methods (#132)
424
- Support docker with PyTorch 1.6.0 (#160)
twang's avatar
twang committed
425
426
427
428
429
430
431
432
433
434
435
436

#### Improvements

- Reduce requirements for the case exclusive of Waymo (#121)
- Switch model zoo to download.openmmlab.com (#126)
- Update docs related to Waymo (#128)
- Add version assertion in the [init file](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/__init__.py) (#129)
- Add evaluation interval setting for CenterPoint (#131)
- Add unit test for CenterPoint (#133)
- Update [PointPillars](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars) baselines on Waymo with full dataset (#142)
- Update [CenterPoint](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/centerpoint) results with models and logs (#154)

hjin2902's avatar
hjin2902 committed
437
438
439
440
441
442
443
444
445
446
447
#### Bug Fixes

- Fix a bug of visualization in multi-batch case (#120)
- Fix bugs in dcn unit test (#130)
- Fix dcn bias bug in centerpoint (#137)
- Fix dataset mapping in the evaluation of nuScenes mini dataset (#140)
- Fix origin initialization in `CameraInstance3DBoxes` (#148, #150)
- Correct documentation link in the getting_started.md (#159)
- Fix model save path bug in gather_models.py (#153)
- Fix image padding shape bug in `PointFusion` (#162)

Wenwei Zhang's avatar
Wenwei Zhang committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
### v0.6.0 (20/9/2020)

#### Highlights

- Support new methods [H3DNet](https://arxiv.org/abs/2006.05682), [3DSSD](https://arxiv.org/abs/2002.10187), [CenterPoint](https://arxiv.org/abs/2006.11275).
- Support new dataset [Waymo](https://waymo.com/open/) (with PointPillars baselines) and [nuImages](https://www.nuscenes.org/nuimages) (with Mask R-CNN and Cascade Mask R-CNN baselines).
- Support Batch Inference
- Support Pytorch 1.6
- Start to publish `mmdet3d` package to PyPI since v0.5.0. You can use mmdet3d through `pip install mmdet3d`.

#### Backwards Incompatible Changes

- Support Batch Inference (#95, #103, #116): MMDetection3D v0.6.0 migrates to support batch inference based on MMDetection >= v2.4.0. This change influences all the test APIs in MMDetection3D and downstream codebases.
- Start to use collect environment function from MMCV (#113): MMDetection3D v0.6.0 migrates to use `collect_env` function in MMCV.
`get_compiler_version` and `get_compiling_cuda_version` compiled in `mmdet3d.ops.utils` are removed. Please import these two functions from `mmcv.ops`.

#### New Features

- Support [nuImages](https://www.nuscenes.org/nuimages) dataset by converting them into coco format and release Mask R-CNN and Cascade Mask R-CNN baseline models (#91, #94)
- Support to publish to PyPI in github-action (#17, #19, #25, #39, #40)
- Support CBGSDataset and make it generally applicable to all the supported datasets (#75, #94)
- Support [H3DNet](https://arxiv.org/abs/2006.05682) and release models on ScanNet dataset (#53, #58, #105)
- Support Fusion Point Sampling used in [3DSSD](https://arxiv.org/abs/2002.10187) (#66)
- Add `BackgroundPointsFilter` to filter background points in data pipeline (#84)
- Support pointnet2 with multi-scale grouping in backbone and refactor pointnets (#82)
- Support dilated ball query used in [3DSSD](https://arxiv.org/abs/2002.10187) (#96)
- Support [3DSSD](https://arxiv.org/abs/2002.10187) and release models on KITTI dataset (#83, #100, #104)
- Support [CenterPoint](https://arxiv.org/abs/2006.11275) and release models on nuScenes dataset (#49, #92)
- Support [Waymo](https://waymo.com/open/) dataset and release PointPillars baseline models (#118)
- Allow `LoadPointsFromMultiSweeps` to pad empty sweeps and select multiple sweeps randomly (#67)

#### Improvements

481
- Fix all warnings and bugs in PyTorch 1.6.0 (#70, #72)
Wenwei Zhang's avatar
Wenwei Zhang committed
482
483
484
485
486
487
488
- Update issue templates (#43)
- Update unit tests (#20, #24, #30)
- Update documentation for using `ply` format point cloud data (#41)
- Use points loader to load point cloud data in ground truth (GT) samplers (#87)
- Unify version file of OpenMMLab projects by using `version.py` (#112)
- Remove unnecessary data preprocessing commands of SUN RGB-D dataset (#110)

hjin2902's avatar
hjin2902 committed
489
490
491
492
493
494
495
496
#### Bug Fixes

- Rename CosineAnealing to CosineAnnealing (#57)
- Fix device inconsistant bug in 3D IoU computation (#69)
- Fix a minor bug in json2csv of lyft dataset (#78)
- Add missed test data for pointnet modules (#85)
- Fix `use_valid_flag` bug in `CustomDataset` (#106)

497
### v0.5.0 (9/7/2020)
Wenwei Zhang's avatar
Wenwei Zhang committed
498

zhangwenwei's avatar
zhangwenwei committed
499
MMDetection3D is released.