test_scannet_dataset.py 26.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import copy
3

yinchimaoliang's avatar
yinchimaoliang committed
4
import numpy as np
Wenwei Zhang's avatar
Wenwei Zhang committed
5
import pytest
yinchimaoliang's avatar
yinchimaoliang committed
6
import torch
yinchimaoliang's avatar
yinchimaoliang committed
7

8
from mmdet3d.datasets import ScanNetDataset, ScanNetSegDataset
yinchimaoliang's avatar
yinchimaoliang committed
9
10
11
12


def test_getitem():
    np.random.seed(0)
liyinhao's avatar
liyinhao committed
13
    root_path = './tests/data/scannet/'
yinchimaoliang's avatar
yinchimaoliang committed
14
15
16
17
18
19
20
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    pipelines = [
        dict(
zhangwenwei's avatar
zhangwenwei committed
21
            type='LoadPointsFromFile',
22
            coord_type='DEPTH',
zhangwenwei's avatar
zhangwenwei committed
23
            shift_height=True,
yinchimaoliang's avatar
yinchimaoliang committed
24
25
            load_dim=6,
            use_dim=[0, 1, 2]),
zhangwenwei's avatar
zhangwenwei committed
26
27
28
29
30
31
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            with_mask_3d=True,
            with_seg_3d=True),
32
33
34
35
36
        dict(type='GlobalAlignment', rotation_axis=2),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33,
                           34, 36, 39)),
37
        dict(type='PointSample', num_points=5),
yinchimaoliang's avatar
yinchimaoliang committed
38
        dict(
wuyuefeng's avatar
wuyuefeng committed
39
40
41
42
43
44
45
46
47
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=1.0,
            flip_ratio_bev_vertical=1.0),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.087266, 0.087266],
            scale_ratio_range=[1.0, 1.0],
            shift_height=True),
yinchimaoliang's avatar
yinchimaoliang committed
48
49
50
51
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=[
zhangwenwei's avatar
zhangwenwei committed
52
                'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
yinchimaoliang's avatar
yinchimaoliang committed
53
                'pts_instance_mask'
liyinhao's avatar
liyinhao committed
54
            ],
wuyuefeng's avatar
wuyuefeng committed
55
            meta_keys=['file_name', 'sample_idx', 'pcd_rotation']),
yinchimaoliang's avatar
yinchimaoliang committed
56
57
    ]

58
    scannet_dataset = ScanNetDataset(root_path, ann_file, pipelines)
yinchimaoliang's avatar
yinchimaoliang committed
59
60
61
    data = scannet_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
zhangwenwei's avatar
zhangwenwei committed
62
    gt_labels = data['gt_labels_3d']._data
liyinhao's avatar
liyinhao committed
63
64
    pts_semantic_mask = data['pts_semantic_mask']._data
    pts_instance_mask = data['pts_instance_mask']._data
zhangwenwei's avatar
zhangwenwei committed
65
    file_name = data['img_metas']._data['file_name']
wuyuefeng's avatar
wuyuefeng committed
66
    pcd_rotation = data['img_metas']._data['pcd_rotation']
zhangwenwei's avatar
zhangwenwei committed
67
    sample_idx = data['img_metas']._data['sample_idx']
wuyuefeng's avatar
wuyuefeng committed
68
69
70
71
    expected_rotation = np.array([[0.99654, 0.08311407, 0.],
                                  [-0.08311407, 0.99654, 0.], [0., 0., 1.]])
    assert file_name == './tests/data/scannet/points/scene0000_00.bin'
    assert np.allclose(pcd_rotation, expected_rotation, 1e-3)
liyinhao's avatar
liyinhao committed
72
    assert sample_idx == 'scene0000_00'
73
74
75
76
77
78
    expected_points = torch.tensor(
        [[1.8339e+00, 2.1093e+00, 2.2900e+00, 2.3895e+00],
         [3.6079e+00, 1.4592e-01, 2.0687e+00, 2.1682e+00],
         [4.1886e+00, 5.0614e+00, -1.0841e-01, -8.8736e-03],
         [6.8790e+00, 1.5086e+00, -9.3154e-02, 6.3816e-03],
         [4.8253e+00, 2.6668e-01, 1.4917e+00, 1.5912e+00]])
wuyuefeng's avatar
wuyuefeng committed
79
    expected_gt_bboxes_3d = torch.tensor(
wuyuefeng's avatar
wuyuefeng committed
80
81
82
83
84
        [[-1.1835, -3.6317, 1.5704, 1.7577, 0.3761, 0.5724, 0.0000],
         [-3.1832, 3.2269, 1.1911, 0.6727, 0.2251, 0.6715, 0.0000],
         [-0.9598, -2.2864, 0.0093, 0.7506, 2.5709, 1.2145, 0.0000],
         [-2.6988, -2.7354, 0.8288, 0.7680, 1.8877, 0.2870, 0.0000],
         [3.2989, 0.2885, -0.0090, 0.7600, 3.8814, 2.1603, 0.0000]])
yinchimaoliang's avatar
yinchimaoliang committed
85
86
87
88
    expected_gt_labels = np.array([
        6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0,
        0, 0, 0, 5, 5, 5
    ])
89
    expected_pts_semantic_mask = np.array([0, 18, 18, 18, 18])
yinchimaoliang's avatar
yinchimaoliang committed
90
    expected_pts_instance_mask = np.array([44, 22, 10, 10, 57])
91
    original_classes = scannet_dataset.CLASSES
yinchimaoliang's avatar
yinchimaoliang committed
92

93
    assert scannet_dataset.CLASSES == class_names
wuyuefeng's avatar
wuyuefeng committed
94
    assert torch.allclose(points, expected_points, 1e-2)
wuyuefeng's avatar
wuyuefeng committed
95
96
    assert gt_bboxes_3d.tensor[:5].shape == (5, 7)
    assert torch.allclose(gt_bboxes_3d.tensor[:5], expected_gt_bboxes_3d, 1e-2)
yinchimaoliang's avatar
yinchimaoliang committed
97
    assert np.all(gt_labels.numpy() == expected_gt_labels)
liyinhao's avatar
liyinhao committed
98
99
    assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
    assert np.all(pts_instance_mask.numpy() == expected_pts_instance_mask)
100
101
102
103
104
105
106
107
108
109
110
111
    assert original_classes == class_names

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=['cabinet', 'bed'])
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=('cabinet', 'bed'))
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ('cabinet', 'bed')

zhangwenwei's avatar
zhangwenwei committed
112
    # Test load classes from file
113
114
115
116
117
118
119
120
121
    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('cabinet\nbed\n')

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=tmp_file.name)
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']
yinchimaoliang's avatar
yinchimaoliang committed
122
123
124


def test_evaluate():
Wenwei Zhang's avatar
Wenwei Zhang committed
125
126
    if not torch.cuda.is_available():
        pytest.skip()
wuyuefeng's avatar
wuyuefeng committed
127
    from mmdet3d.core.bbox.structures import DepthInstance3DBoxes
yinchimaoliang's avatar
yinchimaoliang committed
128
129
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
130
    scannet_dataset = ScanNetDataset(root_path, ann_file)
yinchimaoliang's avatar
yinchimaoliang committed
131
132
    results = []
    pred_boxes = dict()
wuyuefeng's avatar
wuyuefeng committed
133
134
135
136
    pred_boxes['boxes_3d'] = DepthInstance3DBoxes(
        torch.tensor([[
            1.4813e+00, 3.5207e+00, 1.5704e+00, 1.7445e+00, 2.3196e-01,
            5.7235e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
137
        ],
wuyuefeng's avatar
wuyuefeng committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
                      [
                          2.9040e+00, -3.4803e+00, 1.1911e+00, 6.6078e-01,
                          1.7072e-01, 6.7154e-01, 0.0000e+00
                      ],
                      [
                          1.1466e+00, 2.1987e+00, 9.2576e-03, 5.4184e-01,
                          2.5346e+00, 1.2145e+00, 0.0000e+00
                      ],
                      [
                          2.9168e+00, 2.5016e+00, 8.2875e-01, 6.1697e-01,
                          1.8428e+00, 2.8697e-01, 0.0000e+00
                      ],
                      [
                          -3.3114e+00, -1.3351e-02, -8.9524e-03, 4.4082e-01,
                          3.8582e+00, 2.1603e+00, 0.0000e+00
                      ],
                      [
                          -2.0135e+00, -3.4857e+00, 9.3848e-01, 1.9911e+00,
                          2.1603e-01, 1.2767e+00, 0.0000e+00
                      ],
                      [
                          -2.1945e+00, -3.1402e+00, -3.8165e-02, 1.4801e+00,
                          6.8676e-01, 1.0586e+00, 0.0000e+00
                      ],
                      [
                          -2.7553e+00, 2.4055e+00, -2.9972e-02, 1.4764e+00,
                          1.4927e+00, 2.3380e+00, 0.0000e+00
                      ]]))
    pred_boxes['labels_3d'] = torch.tensor([6, 6, 4, 9, 11, 11])
    pred_boxes['scores_3d'] = torch.tensor([0.5, 1.0, 1.0, 1.0, 1.0, 0.5])
liyinhao's avatar
liyinhao committed
168
    results.append(pred_boxes)
liyinhao's avatar
liyinhao committed
169
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
170
    ret_dict = scannet_dataset.evaluate(results, metric)
wuyuefeng's avatar
wuyuefeng committed
171
172
173
174
    assert abs(ret_dict['table_AP_0.25'] - 0.3333) < 0.01
    assert abs(ret_dict['window_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['counter_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['curtain_AP_0.25'] - 1.0) < 0.01
yinchimaoliang's avatar
yinchimaoliang committed
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    # test evaluate with pipeline
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='GlobalAlignment', rotation_axis=2),
        dict(
            type='DefaultFormatBundle3D',
            class_names=class_names,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    ret_dict = scannet_dataset.evaluate(
        results, metric, pipeline=eval_pipeline)
    assert abs(ret_dict['table_AP_0.25'] - 0.3333) < 0.01
    assert abs(ret_dict['window_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['counter_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['curtain_AP_0.25'] - 1.0) < 0.01

yinchimaoliang's avatar
yinchimaoliang committed
202
203
204
205
206

def test_show():
    import tempfile
    from os import path as osp

207
208
    import mmcv

yinchimaoliang's avatar
yinchimaoliang committed
209
    from mmdet3d.core.bbox import DepthInstance3DBoxes
210
211
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
yinchimaoliang's avatar
yinchimaoliang committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor([[
            -2.4053e+00, 9.2295e-01, 8.0661e-02, 2.4054e+00, 2.1468e+00,
            8.5990e-01, 0.0000e+00
        ],
                      [
                          -1.9341e+00, -2.0741e+00, 3.0698e-03, 3.2206e-01,
                          2.5322e-01, 3.5144e-01, 0.0000e+00
                      ],
                      [
                          -3.6908e+00, 8.0684e-03, 2.6201e-01, 4.1515e-01,
                          7.6489e-01, 5.3585e-01, 0.0000e+00
                      ],
                      [
                          2.6332e+00, 8.5143e-01, -4.9964e-03, 3.0367e-01,
                          1.3448e+00, 1.8329e+00, 0.0000e+00
                      ],
                      [
                          2.0221e-02, 2.6153e+00, 1.5109e-02, 7.3335e-01,
                          1.0429e+00, 1.0251e+00, 0.0000e+00
                      ]]))
    scores_3d = torch.tensor(
        [1.2058e-04, 2.3012e-03, 6.2324e-06, 6.6139e-06, 6.7965e-05])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
241
    scannet_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
242
243
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
244
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
yinchimaoliang's avatar
yinchimaoliang committed
245
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
246
                              'scene0000_00_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
247
248
249
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
250
    tmp_dir.cleanup()
251

252
253
254
255
256
257
258
259
260
261
262
263
    # show function with pipeline
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            load_dim=6,
            use_dim=[0, 1, 2]),
264
        dict(type='GlobalAlignment', rotation_axis=2),
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        dict(
            type='DefaultFormatBundle3D',
            class_names=class_names,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

def test_seg_getitem():
    np.random.seed(0)
    root_path = './tests/data/scannet/'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    palette = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]
    scene_idxs = [0 for _ in range(20)]

    # test network inputs are (xyz, rgb, normalized_xyz)
    pipelines = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
335
336
                           28, 33, 34, 36, 39),
            max_cat_id=40),
337
338
339
340
341
        dict(
            type='IndoorPatchPointSample',
            num_points=5,
            block_size=1.5,
            ignore_index=len(class_names),
342
343
344
            use_normalized_coord=True,
            enlarge_size=0.2,
            min_unique_num=None),
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        dict(type='NormalizePointsColor', color_mean=None),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=['points', 'pts_semantic_mask'],
            meta_keys=['file_name', 'sample_idx'])
    ]

    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=pipelines,
        classes=None,
        palette=None,
        modality=None,
        test_mode=False,
        ignore_index=None,
362
        scene_idxs=scene_idxs)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

    data = scannet_dataset[0]
    points = data['points']._data
    pts_semantic_mask = data['pts_semantic_mask']._data
    file_name = data['img_metas']._data['file_name']
    sample_idx = data['img_metas']._data['sample_idx']

    assert file_name == './tests/data/scannet/points/scene0000_00.bin'
    assert sample_idx == 'scene0000_00'
    expected_points = torch.tensor([[
        0.0000, 0.0000, 1.2427, 0.6118, 0.5529, 0.4471, -0.6462, -1.0046,
        0.4280
    ],
                                    [
                                        0.1553, -0.0074, 1.6077, 0.5882,
                                        0.6157, 0.5569, -0.6001, -1.0068,
                                        0.5537
                                    ],
                                    [
                                        0.1518, 0.6016, 0.6548, 0.1490, 0.1059,
                                        0.0431, -0.6012, -0.8309, 0.2255
                                    ],
                                    [
                                        -0.7494, 0.1033, 0.6756, 0.5216,
                                        0.4353, 0.3333, -0.8687, -0.9748,
                                        0.2327
                                    ],
                                    [
                                        -0.6836, -0.0203, 0.5884, 0.5765,
                                        0.5020, 0.4510, -0.8491, -1.0105,
                                        0.2027
                                    ]])
    expected_pts_semantic_mask = np.array([13, 13, 12, 2, 0])
    original_classes = scannet_dataset.CLASSES
    original_palette = scannet_dataset.PALETTE

    assert scannet_dataset.CLASSES == class_names
    assert scannet_dataset.ignore_index == 20
    assert torch.allclose(points, expected_points, 1e-2)
    assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
    assert original_classes == class_names
    assert original_palette == palette
    assert scannet_dataset.scene_idxs.dtype == np.int32
    assert np.all(scannet_dataset.scene_idxs == np.array(scene_idxs))

    # test network inputs are (xyz, rgb)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[3] = dict(
        type='IndoorPatchPointSample',
        num_points=5,
        block_size=1.5,
        ignore_index=len(class_names),
416
417
418
        use_normalized_coord=False,
        enlarge_size=0.2,
        min_unique_num=None)
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, :6], 1e-2)

    # test network inputs are (xyz, normalized_xyz)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[0] = dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=False,
        load_dim=6,
        use_dim=[0, 1, 2])
    new_pipelines.remove(new_pipelines[4])
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, [0, 1, 2, 6, 7, 8]], 1e-2)

    # test network inputs are (xyz,)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[0] = dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=False,
        load_dim=6,
        use_dim=[0, 1, 2])
    new_pipelines[3] = dict(
        type='IndoorPatchPointSample',
        num_points=5,
        block_size=1.5,
        ignore_index=len(class_names),
465
466
467
        use_normalized_coord=False,
        enlarge_size=0.2,
        min_unique_num=None)
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    new_pipelines.remove(new_pipelines[4])
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, :3], 1e-2)

    # test dataset with selected classes
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        classes=['cabinet', 'chair'],
        scene_idxs=scene_idxs)

    label_map = {i: 20 for i in range(41)}
    label_map.update({3: 0, 5: 1})

    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'chair']
    assert scannet_dataset.PALETTE == [palette[2], palette[4]]
    assert scannet_dataset.VALID_CLASS_IDS == [3, 5]
    assert scannet_dataset.label_map == label_map
    assert scannet_dataset.label2cat == {0: 'cabinet', 1: 'chair'}

    # test load classes from file
    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('cabinet\nchair\n')

    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        classes=tmp_file.name,
        scene_idxs=scene_idxs)
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'chair']
    assert scannet_dataset.PALETTE == [palette[2], palette[4]]
    assert scannet_dataset.VALID_CLASS_IDS == [3, 5]
    assert scannet_dataset.label_map == label_map
    assert scannet_dataset.label2cat == {0: 'cabinet', 1: 'chair'}

    # test scene_idxs in dataset
    # we should input scene_idxs in train mode
    with pytest.raises(NotImplementedError):
        scannet_dataset = ScanNetSegDataset(
            data_root=root_path,
            ann_file=ann_file,
            pipeline=None,
            scene_idxs=None)

    # test mode
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        test_mode=True,
        scene_idxs=scene_idxs)
    assert np.all(scannet_dataset.scene_idxs == np.array([0]))


def test_seg_evaluate():
    if not torch.cuda.is_available():
        pytest.skip()
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, test_mode=True)
    results = []
    pred_sem_mask = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results.append(pred_sem_mask)
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
574
575
                           28, 33, 34, 36, 39),
            max_cat_id=40),
576
577
578
579
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
    ]
    ret_dict = scannet_dataset.evaluate(results, pipeline=eval_pipeline)
580
581
582
583
584
585
586
587
588
    assert abs(ret_dict['miou'] - 0.5308) < 0.01
    assert abs(ret_dict['acc'] - 0.8219) < 0.01
    assert abs(ret_dict['acc_cls'] - 0.7649) < 0.01


def test_seg_show():
    import tempfile
    from os import path as osp

589
590
    import mmcv

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, scene_idxs=[0])
    result = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
    # test show with pipeline
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
640
641
                           28, 33, 34, 36, 39),
            max_cat_id=40),
642
643
644
645
646
647
648
649
650
651
652
653
654
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
    ]
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
655
656
657
658
659


def test_seg_format_results():
    from os import path as osp

660
661
    import mmcv

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, test_mode=True)
    results = []
    pred_sem_mask = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results.append(pred_sem_mask)
    result_files, tmp_dir = scannet_dataset.format_results(results)

    expected_label = np.array([
        16, 6, 2, 3, 7, 3, 16, 2, 24, 3, 1, 1, 6, 6, 4, 1, 2, 24, 1, 1, 1, 36,
        7, 28, 16, 1, 3, 5, 1, 4, 33, 7, 16, 6, 16, 1, 1, 1, 1, 2, 8, 4, 39,
        14, 9, 1, 12, 1, 1, 2, 3, 16, 34, 2, 2, 2, 7, 3, 16, 39, 5, 34, 1, 24,
        2, 8, 3, 2, 8, 3, 1, 6, 34, 6, 1, 1, 4, 7, 6, 12, 2, 16, 16, 3, 4, 2,
        1, 16, 39, 2, 24, 6, 4, 2, 16, 2, 3, 4, 3, 2
    ])
    expected_txt_path = osp.join(tmp_dir.name, 'results', 'scene0000_00.txt')
    assert np.all(result_files[0]['seg_mask'] == expected_label)
    mmcv.check_file_exist(expected_txt_path)