test_scannet_dataset.py 26.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import copy
yinchimaoliang's avatar
yinchimaoliang committed
3
import numpy as np
Wenwei Zhang's avatar
Wenwei Zhang committed
4
import pytest
yinchimaoliang's avatar
yinchimaoliang committed
5
import torch
yinchimaoliang's avatar
yinchimaoliang committed
6

7
from mmdet3d.datasets import ScanNetDataset, ScanNetSegDataset
yinchimaoliang's avatar
yinchimaoliang committed
8
9
10
11


def test_getitem():
    np.random.seed(0)
liyinhao's avatar
liyinhao committed
12
    root_path = './tests/data/scannet/'
yinchimaoliang's avatar
yinchimaoliang committed
13
14
15
16
17
18
19
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    pipelines = [
        dict(
zhangwenwei's avatar
zhangwenwei committed
20
            type='LoadPointsFromFile',
21
            coord_type='DEPTH',
zhangwenwei's avatar
zhangwenwei committed
22
            shift_height=True,
yinchimaoliang's avatar
yinchimaoliang committed
23
24
            load_dim=6,
            use_dim=[0, 1, 2]),
zhangwenwei's avatar
zhangwenwei committed
25
26
27
28
29
30
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            with_mask_3d=True,
            with_seg_3d=True),
31
32
33
34
35
        dict(type='GlobalAlignment', rotation_axis=2),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33,
                           34, 36, 39)),
36
        dict(type='PointSample', num_points=5),
yinchimaoliang's avatar
yinchimaoliang committed
37
        dict(
wuyuefeng's avatar
wuyuefeng committed
38
39
40
41
42
43
44
45
46
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=1.0,
            flip_ratio_bev_vertical=1.0),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.087266, 0.087266],
            scale_ratio_range=[1.0, 1.0],
            shift_height=True),
yinchimaoliang's avatar
yinchimaoliang committed
47
48
49
50
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=[
zhangwenwei's avatar
zhangwenwei committed
51
                'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
yinchimaoliang's avatar
yinchimaoliang committed
52
                'pts_instance_mask'
liyinhao's avatar
liyinhao committed
53
            ],
wuyuefeng's avatar
wuyuefeng committed
54
            meta_keys=['file_name', 'sample_idx', 'pcd_rotation']),
yinchimaoliang's avatar
yinchimaoliang committed
55
56
    ]

57
    scannet_dataset = ScanNetDataset(root_path, ann_file, pipelines)
yinchimaoliang's avatar
yinchimaoliang committed
58
59
60
    data = scannet_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
zhangwenwei's avatar
zhangwenwei committed
61
    gt_labels = data['gt_labels_3d']._data
liyinhao's avatar
liyinhao committed
62
63
    pts_semantic_mask = data['pts_semantic_mask']._data
    pts_instance_mask = data['pts_instance_mask']._data
zhangwenwei's avatar
zhangwenwei committed
64
    file_name = data['img_metas']._data['file_name']
wuyuefeng's avatar
wuyuefeng committed
65
    pcd_rotation = data['img_metas']._data['pcd_rotation']
zhangwenwei's avatar
zhangwenwei committed
66
    sample_idx = data['img_metas']._data['sample_idx']
wuyuefeng's avatar
wuyuefeng committed
67
68
69
70
    expected_rotation = np.array([[0.99654, 0.08311407, 0.],
                                  [-0.08311407, 0.99654, 0.], [0., 0., 1.]])
    assert file_name == './tests/data/scannet/points/scene0000_00.bin'
    assert np.allclose(pcd_rotation, expected_rotation, 1e-3)
liyinhao's avatar
liyinhao committed
71
    assert sample_idx == 'scene0000_00'
72
73
74
75
76
77
    expected_points = torch.tensor(
        [[1.8339e+00, 2.1093e+00, 2.2900e+00, 2.3895e+00],
         [3.6079e+00, 1.4592e-01, 2.0687e+00, 2.1682e+00],
         [4.1886e+00, 5.0614e+00, -1.0841e-01, -8.8736e-03],
         [6.8790e+00, 1.5086e+00, -9.3154e-02, 6.3816e-03],
         [4.8253e+00, 2.6668e-01, 1.4917e+00, 1.5912e+00]])
wuyuefeng's avatar
wuyuefeng committed
78
    expected_gt_bboxes_3d = torch.tensor(
wuyuefeng's avatar
wuyuefeng committed
79
80
81
82
83
        [[-1.1835, -3.6317, 1.5704, 1.7577, 0.3761, 0.5724, 0.0000],
         [-3.1832, 3.2269, 1.1911, 0.6727, 0.2251, 0.6715, 0.0000],
         [-0.9598, -2.2864, 0.0093, 0.7506, 2.5709, 1.2145, 0.0000],
         [-2.6988, -2.7354, 0.8288, 0.7680, 1.8877, 0.2870, 0.0000],
         [3.2989, 0.2885, -0.0090, 0.7600, 3.8814, 2.1603, 0.0000]])
yinchimaoliang's avatar
yinchimaoliang committed
84
85
86
87
    expected_gt_labels = np.array([
        6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0,
        0, 0, 0, 5, 5, 5
    ])
88
    expected_pts_semantic_mask = np.array([0, 18, 18, 18, 18])
yinchimaoliang's avatar
yinchimaoliang committed
89
    expected_pts_instance_mask = np.array([44, 22, 10, 10, 57])
90
    original_classes = scannet_dataset.CLASSES
yinchimaoliang's avatar
yinchimaoliang committed
91

92
    assert scannet_dataset.CLASSES == class_names
wuyuefeng's avatar
wuyuefeng committed
93
    assert torch.allclose(points, expected_points, 1e-2)
wuyuefeng's avatar
wuyuefeng committed
94
95
    assert gt_bboxes_3d.tensor[:5].shape == (5, 7)
    assert torch.allclose(gt_bboxes_3d.tensor[:5], expected_gt_bboxes_3d, 1e-2)
yinchimaoliang's avatar
yinchimaoliang committed
96
    assert np.all(gt_labels.numpy() == expected_gt_labels)
liyinhao's avatar
liyinhao committed
97
98
    assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
    assert np.all(pts_instance_mask.numpy() == expected_pts_instance_mask)
99
100
101
102
103
104
105
106
107
108
109
110
    assert original_classes == class_names

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=['cabinet', 'bed'])
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=('cabinet', 'bed'))
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ('cabinet', 'bed')

zhangwenwei's avatar
zhangwenwei committed
111
    # Test load classes from file
112
113
114
115
116
117
118
119
120
    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('cabinet\nbed\n')

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=tmp_file.name)
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']
yinchimaoliang's avatar
yinchimaoliang committed
121
122
123


def test_evaluate():
Wenwei Zhang's avatar
Wenwei Zhang committed
124
125
    if not torch.cuda.is_available():
        pytest.skip()
wuyuefeng's avatar
wuyuefeng committed
126
    from mmdet3d.core.bbox.structures import DepthInstance3DBoxes
yinchimaoliang's avatar
yinchimaoliang committed
127
128
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
129
    scannet_dataset = ScanNetDataset(root_path, ann_file)
yinchimaoliang's avatar
yinchimaoliang committed
130
131
    results = []
    pred_boxes = dict()
wuyuefeng's avatar
wuyuefeng committed
132
133
134
135
    pred_boxes['boxes_3d'] = DepthInstance3DBoxes(
        torch.tensor([[
            1.4813e+00, 3.5207e+00, 1.5704e+00, 1.7445e+00, 2.3196e-01,
            5.7235e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
136
        ],
wuyuefeng's avatar
wuyuefeng committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
                      [
                          2.9040e+00, -3.4803e+00, 1.1911e+00, 6.6078e-01,
                          1.7072e-01, 6.7154e-01, 0.0000e+00
                      ],
                      [
                          1.1466e+00, 2.1987e+00, 9.2576e-03, 5.4184e-01,
                          2.5346e+00, 1.2145e+00, 0.0000e+00
                      ],
                      [
                          2.9168e+00, 2.5016e+00, 8.2875e-01, 6.1697e-01,
                          1.8428e+00, 2.8697e-01, 0.0000e+00
                      ],
                      [
                          -3.3114e+00, -1.3351e-02, -8.9524e-03, 4.4082e-01,
                          3.8582e+00, 2.1603e+00, 0.0000e+00
                      ],
                      [
                          -2.0135e+00, -3.4857e+00, 9.3848e-01, 1.9911e+00,
                          2.1603e-01, 1.2767e+00, 0.0000e+00
                      ],
                      [
                          -2.1945e+00, -3.1402e+00, -3.8165e-02, 1.4801e+00,
                          6.8676e-01, 1.0586e+00, 0.0000e+00
                      ],
                      [
                          -2.7553e+00, 2.4055e+00, -2.9972e-02, 1.4764e+00,
                          1.4927e+00, 2.3380e+00, 0.0000e+00
                      ]]))
    pred_boxes['labels_3d'] = torch.tensor([6, 6, 4, 9, 11, 11])
    pred_boxes['scores_3d'] = torch.tensor([0.5, 1.0, 1.0, 1.0, 1.0, 0.5])
liyinhao's avatar
liyinhao committed
167
    results.append(pred_boxes)
liyinhao's avatar
liyinhao committed
168
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
169
    ret_dict = scannet_dataset.evaluate(results, metric)
wuyuefeng's avatar
wuyuefeng committed
170
171
172
173
    assert abs(ret_dict['table_AP_0.25'] - 0.3333) < 0.01
    assert abs(ret_dict['window_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['counter_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['curtain_AP_0.25'] - 1.0) < 0.01
yinchimaoliang's avatar
yinchimaoliang committed
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    # test evaluate with pipeline
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='GlobalAlignment', rotation_axis=2),
        dict(
            type='DefaultFormatBundle3D',
            class_names=class_names,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    ret_dict = scannet_dataset.evaluate(
        results, metric, pipeline=eval_pipeline)
    assert abs(ret_dict['table_AP_0.25'] - 0.3333) < 0.01
    assert abs(ret_dict['window_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['counter_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['curtain_AP_0.25'] - 1.0) < 0.01

yinchimaoliang's avatar
yinchimaoliang committed
201
202
203
204
205
206
207

def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
208
209
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
yinchimaoliang's avatar
yinchimaoliang committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor([[
            -2.4053e+00, 9.2295e-01, 8.0661e-02, 2.4054e+00, 2.1468e+00,
            8.5990e-01, 0.0000e+00
        ],
                      [
                          -1.9341e+00, -2.0741e+00, 3.0698e-03, 3.2206e-01,
                          2.5322e-01, 3.5144e-01, 0.0000e+00
                      ],
                      [
                          -3.6908e+00, 8.0684e-03, 2.6201e-01, 4.1515e-01,
                          7.6489e-01, 5.3585e-01, 0.0000e+00
                      ],
                      [
                          2.6332e+00, 8.5143e-01, -4.9964e-03, 3.0367e-01,
                          1.3448e+00, 1.8329e+00, 0.0000e+00
                      ],
                      [
                          2.0221e-02, 2.6153e+00, 1.5109e-02, 7.3335e-01,
                          1.0429e+00, 1.0251e+00, 0.0000e+00
                      ]]))
    scores_3d = torch.tensor(
        [1.2058e-04, 2.3012e-03, 6.2324e-06, 6.6139e-06, 6.7965e-05])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
239
    scannet_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
240
241
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
242
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
yinchimaoliang's avatar
yinchimaoliang committed
243
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
244
                              'scene0000_00_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
245
246
247
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
248
    tmp_dir.cleanup()
249

250
251
252
253
254
255
256
257
258
259
260
261
    # show function with pipeline
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            load_dim=6,
            use_dim=[0, 1, 2]),
262
        dict(type='GlobalAlignment', rotation_axis=2),
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        dict(
            type='DefaultFormatBundle3D',
            class_names=class_names,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

def test_seg_getitem():
    np.random.seed(0)
    root_path = './tests/data/scannet/'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    palette = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]
    scene_idxs = [0 for _ in range(20)]

    # test network inputs are (xyz, rgb, normalized_xyz)
    pipelines = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
333
334
                           28, 33, 34, 36, 39),
            max_cat_id=40),
335
336
337
338
339
        dict(
            type='IndoorPatchPointSample',
            num_points=5,
            block_size=1.5,
            ignore_index=len(class_names),
340
341
342
            use_normalized_coord=True,
            enlarge_size=0.2,
            min_unique_num=None),
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        dict(type='NormalizePointsColor', color_mean=None),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=['points', 'pts_semantic_mask'],
            meta_keys=['file_name', 'sample_idx'])
    ]

    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=pipelines,
        classes=None,
        palette=None,
        modality=None,
        test_mode=False,
        ignore_index=None,
360
        scene_idxs=scene_idxs)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

    data = scannet_dataset[0]
    points = data['points']._data
    pts_semantic_mask = data['pts_semantic_mask']._data
    file_name = data['img_metas']._data['file_name']
    sample_idx = data['img_metas']._data['sample_idx']

    assert file_name == './tests/data/scannet/points/scene0000_00.bin'
    assert sample_idx == 'scene0000_00'
    expected_points = torch.tensor([[
        0.0000, 0.0000, 1.2427, 0.6118, 0.5529, 0.4471, -0.6462, -1.0046,
        0.4280
    ],
                                    [
                                        0.1553, -0.0074, 1.6077, 0.5882,
                                        0.6157, 0.5569, -0.6001, -1.0068,
                                        0.5537
                                    ],
                                    [
                                        0.1518, 0.6016, 0.6548, 0.1490, 0.1059,
                                        0.0431, -0.6012, -0.8309, 0.2255
                                    ],
                                    [
                                        -0.7494, 0.1033, 0.6756, 0.5216,
                                        0.4353, 0.3333, -0.8687, -0.9748,
                                        0.2327
                                    ],
                                    [
                                        -0.6836, -0.0203, 0.5884, 0.5765,
                                        0.5020, 0.4510, -0.8491, -1.0105,
                                        0.2027
                                    ]])
    expected_pts_semantic_mask = np.array([13, 13, 12, 2, 0])
    original_classes = scannet_dataset.CLASSES
    original_palette = scannet_dataset.PALETTE

    assert scannet_dataset.CLASSES == class_names
    assert scannet_dataset.ignore_index == 20
    assert torch.allclose(points, expected_points, 1e-2)
    assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
    assert original_classes == class_names
    assert original_palette == palette
    assert scannet_dataset.scene_idxs.dtype == np.int32
    assert np.all(scannet_dataset.scene_idxs == np.array(scene_idxs))

    # test network inputs are (xyz, rgb)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[3] = dict(
        type='IndoorPatchPointSample',
        num_points=5,
        block_size=1.5,
        ignore_index=len(class_names),
414
415
416
        use_normalized_coord=False,
        enlarge_size=0.2,
        min_unique_num=None)
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, :6], 1e-2)

    # test network inputs are (xyz, normalized_xyz)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[0] = dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=False,
        load_dim=6,
        use_dim=[0, 1, 2])
    new_pipelines.remove(new_pipelines[4])
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, [0, 1, 2, 6, 7, 8]], 1e-2)

    # test network inputs are (xyz,)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[0] = dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=False,
        load_dim=6,
        use_dim=[0, 1, 2])
    new_pipelines[3] = dict(
        type='IndoorPatchPointSample',
        num_points=5,
        block_size=1.5,
        ignore_index=len(class_names),
463
464
465
        use_normalized_coord=False,
        enlarge_size=0.2,
        min_unique_num=None)
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    new_pipelines.remove(new_pipelines[4])
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, :3], 1e-2)

    # test dataset with selected classes
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        classes=['cabinet', 'chair'],
        scene_idxs=scene_idxs)

    label_map = {i: 20 for i in range(41)}
    label_map.update({3: 0, 5: 1})

    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'chair']
    assert scannet_dataset.PALETTE == [palette[2], palette[4]]
    assert scannet_dataset.VALID_CLASS_IDS == [3, 5]
    assert scannet_dataset.label_map == label_map
    assert scannet_dataset.label2cat == {0: 'cabinet', 1: 'chair'}

    # test load classes from file
    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('cabinet\nchair\n')

    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        classes=tmp_file.name,
        scene_idxs=scene_idxs)
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'chair']
    assert scannet_dataset.PALETTE == [palette[2], palette[4]]
    assert scannet_dataset.VALID_CLASS_IDS == [3, 5]
    assert scannet_dataset.label_map == label_map
    assert scannet_dataset.label2cat == {0: 'cabinet', 1: 'chair'}

    # test scene_idxs in dataset
    # we should input scene_idxs in train mode
    with pytest.raises(NotImplementedError):
        scannet_dataset = ScanNetSegDataset(
            data_root=root_path,
            ann_file=ann_file,
            pipeline=None,
            scene_idxs=None)

    # test mode
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        test_mode=True,
        scene_idxs=scene_idxs)
    assert np.all(scannet_dataset.scene_idxs == np.array([0]))


def test_seg_evaluate():
    if not torch.cuda.is_available():
        pytest.skip()
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, test_mode=True)
    results = []
    pred_sem_mask = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results.append(pred_sem_mask)
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
572
573
                           28, 33, 34, 36, 39),
            max_cat_id=40),
574
575
576
577
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
    ]
    ret_dict = scannet_dataset.evaluate(results, pipeline=eval_pipeline)
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    assert abs(ret_dict['miou'] - 0.5308) < 0.01
    assert abs(ret_dict['acc'] - 0.8219) < 0.01
    assert abs(ret_dict['acc_cls'] - 0.7649) < 0.01


def test_seg_show():
    import mmcv
    import tempfile
    from os import path as osp

    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, scene_idxs=[0])
    result = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    # test show with pipeline
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
637
638
                           28, 33, 34, 36, 39),
            max_cat_id=40),
639
640
641
642
643
644
645
646
647
648
649
650
651
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
    ]
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683


def test_seg_format_results():
    import mmcv
    from os import path as osp

    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, test_mode=True)
    results = []
    pred_sem_mask = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results.append(pred_sem_mask)
    result_files, tmp_dir = scannet_dataset.format_results(results)

    expected_label = np.array([
        16, 6, 2, 3, 7, 3, 16, 2, 24, 3, 1, 1, 6, 6, 4, 1, 2, 24, 1, 1, 1, 36,
        7, 28, 16, 1, 3, 5, 1, 4, 33, 7, 16, 6, 16, 1, 1, 1, 1, 2, 8, 4, 39,
        14, 9, 1, 12, 1, 1, 2, 3, 16, 34, 2, 2, 2, 7, 3, 16, 39, 5, 34, 1, 24,
        2, 8, 3, 2, 8, 3, 1, 6, 34, 6, 1, 1, 4, 7, 6, 12, 2, 16, 16, 3, 4, 2,
        1, 16, 39, 2, 24, 6, 4, 2, 16, 2, 3, 4, 3, 2
    ])
    expected_txt_path = osp.join(tmp_dir.name, 'results', 'scene0000_00.txt')
    assert np.all(result_files[0]['seg_mask'] == expected_label)
    mmcv.check_file_exist(expected_txt_path)