dv_second_secfpn_6x8_80e_kitti-3d-car.py 5.76 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
# model settings
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]  # velodyne coordinates, x, y, z

model = dict(
    type='DynamicVoxelNet',
    voxel_layer=dict(
        max_num_points=-1,  # max_points_per_voxel
        point_cloud_range=point_cloud_range,
        voxel_size=voxel_size,
11
        max_voxels=(-1, -1)  # (training, testing) max_coxels
zhangwenwei's avatar
zhangwenwei committed
12
13
    ),
    voxel_encoder=dict(
zhangwenwei's avatar
zhangwenwei committed
14
        type='DynamicSimpleVFE',
zhangwenwei's avatar
zhangwenwei committed
15
16
17
18
19
        voxel_size=voxel_size,
        point_cloud_range=point_cloud_range),
    middle_encoder=dict(
        type='SparseEncoder',
        in_channels=4,
wuyuefeng's avatar
wuyuefeng committed
20
21
        sparse_shape=[41, 1600, 1408],
        order=('conv', 'norm', 'act')),
zhangwenwei's avatar
zhangwenwei committed
22
23
24
25
26
    backbone=dict(
        type='SECOND',
        in_channels=256,
        layer_nums=[5, 5],
        layer_strides=[1, 2],
27
        out_channels=[128, 256]),
zhangwenwei's avatar
zhangwenwei committed
28
29
30
31
    neck=dict(
        type='SECONDFPN',
        in_channels=[128, 256],
        upsample_strides=[1, 2],
32
        out_channels=[256, 256]),
zhangwenwei's avatar
zhangwenwei committed
33
    bbox_head=dict(
zhangwenwei's avatar
zhangwenwei committed
34
35
        type='Anchor3DHead',
        num_classes=1,
zhangwenwei's avatar
zhangwenwei committed
36
37
38
        in_channels=512,
        feat_channels=512,
        use_direction_classifier=True,
39
40
41
42
43
44
        anchor_generator=dict(
            type='Anchor3DRangeGenerator',
            ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]],
            sizes=[[1.6, 3.9, 1.56]],
            rotations=[0, 1.57],
            reshape_out=True),
zhangwenwei's avatar
zhangwenwei committed
45
        diff_rad_by_sin=True,
46
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
47
48
49
50
51
52
53
54
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
        loss_dir=dict(
55
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
zhangwenwei's avatar
zhangwenwei committed
56
57
58
59
# model training and testing settings
train_cfg = dict(
    assigner=dict(
        type='MaxIoUAssigner',
zhangwenwei's avatar
zhangwenwei committed
60
        iou_calculator=dict(type='BboxOverlapsNearest3D'),
zhangwenwei's avatar
zhangwenwei committed
61
62
63
64
65
66
67
68
69
70
71
        pos_iou_thr=0.6,
        neg_iou_thr=0.45,
        min_pos_iou=0.45,
        ignore_iof_thr=-1),
    allowed_border=0,
    pos_weight=-1,
    debug=False)
test_cfg = dict(
    use_rotate_nms=True,
    nms_across_levels=False,
    nms_thr=0.01,
72
    score_thr=0.1,
zhangwenwei's avatar
zhangwenwei committed
73
    min_bbox_size=0,
zhangwenwei's avatar
zhangwenwei committed
74
75
    nms_pre=100,
    max_num=50)
zhangwenwei's avatar
zhangwenwei committed
76
77
78
79
80

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
81
input_modality = dict(use_lidar=True, use_camera=False)
zhangwenwei's avatar
zhangwenwei committed
82
db_sampler = dict(
zhangwenwei's avatar
zhangwenwei committed
83
    data_root=data_root,
zhangwenwei's avatar
zhangwenwei committed
84
85
86
87
88
89
90
91
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    object_rot_range=[0.0, 0.0],
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5),
    ),
    sample_groups=dict(Car=15),
zhangwenwei's avatar
zhangwenwei committed
92
    classes=class_names)
zhangwenwei's avatar
zhangwenwei committed
93
train_pipeline = [
zhangwenwei's avatar
zhangwenwei committed
94
95
    dict(type='LoadPointsFromFile', load_dim=4, use_dim=4),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
zhangwenwei's avatar
zhangwenwei committed
96
97
98
99
100
101
102
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        loc_noise_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_uniform_noise=[-0.78539816, 0.78539816]),
103
    dict(type='RandomFlip3D', flip_ratio=0.5),
zhangwenwei's avatar
zhangwenwei committed
104
105
106
107
108
109
110
111
    dict(
        type='GlobalRotScale',
        rot_uniform_noise=[-0.78539816, 0.78539816],
        scaling_uniform_noise=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
zhangwenwei's avatar
zhangwenwei committed
112
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
zhangwenwei's avatar
zhangwenwei committed
113
114
]
test_pipeline = [
zhangwenwei's avatar
zhangwenwei committed
115
    dict(type='LoadPointsFromFile', load_dim=4, use_dim=4),
zhangwenwei's avatar
zhangwenwei committed
116
117
118
119
120
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(
        type='DefaultFormatBundle3D',
        class_names=class_names,
        with_label=False),
zhangwenwei's avatar
zhangwenwei committed
121
    dict(type='Collect3D', keys=['points']),
zhangwenwei's avatar
zhangwenwei committed
122
123
124
125
126
127
]

data = dict(
    samples_per_gpu=6,
    workers_per_gpu=4,
    train=dict(
128
129
130
131
132
133
134
135
136
137
138
139
        type='RepeatDataset',
        times=2,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file=data_root + 'kitti_infos_train.pkl',
            split='training',
            pts_prefix='velodyne_reduced',
            pipeline=train_pipeline,
            modality=input_modality,
            classes=class_names,
            test_mode=False)),
zhangwenwei's avatar
zhangwenwei committed
140
141
    val=dict(
        type=dataset_type,
zhangwenwei's avatar
zhangwenwei committed
142
        data_root=data_root,
zhangwenwei's avatar
zhangwenwei committed
143
144
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='training',
zhangwenwei's avatar
zhangwenwei committed
145
        pts_prefix='velodyne_reduced',
zhangwenwei's avatar
zhangwenwei committed
146
147
        pipeline=test_pipeline,
        modality=input_modality,
zhangwenwei's avatar
zhangwenwei committed
148
149
        classes=class_names,
        test_mode=True),
zhangwenwei's avatar
zhangwenwei committed
150
151
    test=dict(
        type=dataset_type,
zhangwenwei's avatar
zhangwenwei committed
152
        data_root=data_root,
zhangwenwei's avatar
zhangwenwei committed
153
        ann_file=data_root + 'kitti_infos_val.pkl',
zhangwenwei's avatar
zhangwenwei committed
154
155
        split='training',
        pts_prefix='velodyne_reduced',
zhangwenwei's avatar
zhangwenwei committed
156
157
        pipeline=test_pipeline,
        modality=input_modality,
zhangwenwei's avatar
zhangwenwei committed
158
159
        classes=class_names,
        test_mode=True))
zhangwenwei's avatar
zhangwenwei committed
160
161
162
163
164
165
# optimizer
lr = 0.0018  # max learning rate
optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict(
    policy='cyclic',
zhangwenwei's avatar
zhangwenwei committed
166
    target_ratio=(10, 1e-4),
zhangwenwei's avatar
zhangwenwei committed
167
168
169
170
171
    cyclic_times=1,
    step_ratio_up=0.4,
)
momentum_config = dict(
    policy='cyclic',
zhangwenwei's avatar
zhangwenwei committed
172
    target_ratio=(0.85 / 0.95, 1),
zhangwenwei's avatar
zhangwenwei committed
173
174
175
176
    cyclic_times=1,
    step_ratio_up=0.4,
)
checkpoint_config = dict(interval=1)
177
evaluation = dict(interval=1)
zhangwenwei's avatar
zhangwenwei committed
178
179
180
181
182
183
184
185
186
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
187
total_epochs = 40
zhangwenwei's avatar
zhangwenwei committed
188
dist_params = dict(backend='nccl')
zhangwenwei's avatar
zhangwenwei committed
189
190
191
192
193
log_level = 'INFO'
work_dir = './work_dirs/sec_secfpn_80e'
load_from = None
resume_from = None
workflow = [('train', 1)]