create_gt_database.py 12.3 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
import pickle
zhangwenwei's avatar
zhangwenwei committed
4
from mmcv import track_iter_progress
zhangwenwei's avatar
zhangwenwei committed
5
from mmcv.ops import roi_align
zhangwenwei's avatar
zhangwenwei committed
6
7
from os import path as osp
from pycocotools import mask as maskUtils
zhangwenwei's avatar
zhangwenwei committed
8
9
from pycocotools.coco import COCO

zhangwenwei's avatar
zhangwenwei committed
10
from mmdet3d.core.bbox import box_np_ops as box_np_ops
zhangwenwei's avatar
zhangwenwei committed
11
from mmdet3d.datasets import build_dataset
zhangwenwei's avatar
zhangwenwei committed
12
from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps
zhangwenwei's avatar
zhangwenwei committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121


def _poly2mask(mask_ann, img_h, img_w):
    if isinstance(mask_ann, list):
        # polygon -- a single object might consist of multiple parts
        # we merge all parts into one mask rle code
        rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
        rle = maskUtils.merge(rles)
    elif isinstance(mask_ann['counts'], list):
        # uncompressed RLE
        rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
    else:
        # rle
        rle = mask_ann
    mask = maskUtils.decode(rle)
    return mask


def _parse_coco_ann_info(ann_info):
    gt_bboxes = []
    gt_labels = []
    gt_bboxes_ignore = []
    gt_masks_ann = []

    for i, ann in enumerate(ann_info):
        if ann.get('ignore', False):
            continue
        x1, y1, w, h = ann['bbox']
        if ann['area'] <= 0:
            continue
        bbox = [x1, y1, x1 + w, y1 + h]
        if ann.get('iscrowd', False):
            gt_bboxes_ignore.append(bbox)
        else:
            gt_bboxes.append(bbox)
            gt_masks_ann.append(ann['segmentation'])

    if gt_bboxes:
        gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
        gt_labels = np.array(gt_labels, dtype=np.int64)
    else:
        gt_bboxes = np.zeros((0, 4), dtype=np.float32)
        gt_labels = np.array([], dtype=np.int64)

    if gt_bboxes_ignore:
        gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
    else:
        gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

    ann = dict(
        bboxes=gt_bboxes, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann)

    return ann


def crop_image_patch_v2(pos_proposals, pos_assigned_gt_inds, gt_masks):
    import torch
    from torch.nn.modules.utils import _pair
    device = pos_proposals.device
    num_pos = pos_proposals.size(0)
    fake_inds = (
        torch.arange(num_pos,
                     device=device).to(dtype=pos_proposals.dtype)[:, None])
    rois = torch.cat([fake_inds, pos_proposals], dim=1)  # Nx5
    mask_size = _pair(28)
    rois = rois.to(device=device)
    gt_masks_th = (
        torch.from_numpy(gt_masks).to(device).index_select(
            0, pos_assigned_gt_inds).to(dtype=rois.dtype))
    # Use RoIAlign could apparently accelerate the training (~0.1s/iter)
    targets = (
        roi_align(gt_masks_th, rois, mask_size[::-1], 1.0, 0, True).squeeze(1))
    return targets


def crop_image_patch(pos_proposals, gt_masks, pos_assigned_gt_inds, org_img):
    num_pos = pos_proposals.shape[0]
    masks = []
    img_patches = []
    for i in range(num_pos):
        gt_mask = gt_masks[pos_assigned_gt_inds[i]]
        bbox = pos_proposals[i, :].astype(np.int32)
        x1, y1, x2, y2 = bbox
        w = np.maximum(x2 - x1 + 1, 1)
        h = np.maximum(y2 - y1 + 1, 1)

        mask_patch = gt_mask[y1:y1 + h, x1:x1 + w]
        masked_img = gt_mask[..., None] * org_img
        img_patch = masked_img[y1:y1 + h, x1:x1 + w]

        img_patches.append(img_patch)
        masks.append(mask_patch)
    return img_patches, masks


def create_groundtruth_database(dataset_class_name,
                                data_path,
                                info_prefix,
                                info_path=None,
                                mask_anno_path=None,
                                used_classes=None,
                                database_save_path=None,
                                db_info_save_path=None,
                                relative_path=True,
                                add_rgb=False,
                                lidar_only=False,
                                bev_only=False,
                                coors_range=None,
                                with_mask=False):
liyinhao's avatar
liyinhao committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    """Given the raw data, generate the ground truth database.

    Args:
        dataset_class_name (str): Name of the input dataset.
        data_path (str): Path of the data.
        info_prefix (str): Prefix of the info file.
        info_path (str): Path of the info file.
            Default: None.
        mask_anno_path (str): Path of the mask_anno.
            Default: None.
        used_classes (list[str]): Classes have been used.
            Default: None.
        database_save_path (str): Path to save database.
            Default: None.
        db_info_save_path (str): Path to save db_info.
            Default: None.
        relative_path (bool): Whether to use relative path.
            Default: True.
        with_mask (bool): Whether to use mask.
            Default: False.
    """
zhangwenwei's avatar
zhangwenwei committed
143
144
    print(f'Create GT Database of {dataset_class_name}')
    dataset_cfg = dict(
145
        type=dataset_class_name, data_root=data_path, ann_file=info_path)
zhangwenwei's avatar
zhangwenwei committed
146
    if dataset_class_name == 'KittiDataset':
liyinhao's avatar
liyinhao committed
147
        file_client_args = dict(backend='disk')
zhangwenwei's avatar
zhangwenwei committed
148
        dataset_cfg.update(
liyinhao's avatar
liyinhao committed
149
            test_mode=False,
zhangwenwei's avatar
zhangwenwei committed
150
151
152
153
154
155
            split='training',
            modality=dict(
                use_lidar=True,
                use_depth=False,
                use_lidar_intensity=True,
                use_camera=with_mask,
liyinhao's avatar
liyinhao committed
156
157
158
159
            ),
            pipeline=[
                dict(
                    type='LoadPointsFromFile',
meng-zha's avatar
meng-zha committed
160
                    coord_type='LIDAR',
liyinhao's avatar
liyinhao committed
161
162
163
164
165
166
167
168
169
                    load_dim=4,
                    use_dim=4,
                    file_client_args=file_client_args),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True,
                    file_client_args=file_client_args)
            ])
liyinhao's avatar
liyinhao committed
170

liyinhao's avatar
liyinhao committed
171
    elif dataset_class_name == 'NuScenesDataset':
172
173
174
175
        dataset_cfg.update(
            use_valid_flag=True,
            pipeline=[
                dict(
176
                    type='LoadPointsFromFile',
meng-zha's avatar
meng-zha committed
177
                    coord_type='LIDAR',
178
179
180
181
                    load_dim=5,
                    use_dim=5),
                dict(
                    type='LoadPointsFromMultiSweeps',
182
183
184
185
186
187
188
189
190
                    sweeps_num=10,
                    use_dim=[0, 1, 2, 3, 4],
                    pad_empty_sweeps=True,
                    remove_close=True),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True)
            ])
Wenwei Zhang's avatar
Wenwei Zhang committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    elif dataset_class_name == 'WaymoDataset':
        file_client_args = dict(backend='disk')
        dataset_cfg.update(
            test_mode=False,
            split='training',
            modality=dict(
                use_lidar=True,
                use_depth=False,
                use_lidar_intensity=True,
                use_camera=False,
            ),
            pipeline=[
                dict(
                    type='LoadPointsFromFile',
meng-zha's avatar
meng-zha committed
206
                    coord_type='LIDAR',
Wenwei Zhang's avatar
Wenwei Zhang committed
207
208
209
210
211
212
213
214
215
216
                    load_dim=6,
                    use_dim=5,
                    file_client_args=file_client_args),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True,
                    file_client_args=file_client_args)
            ])

zhangwenwei's avatar
zhangwenwei committed
217
218
219
    dataset = build_dataset(dataset_cfg)

    if database_save_path is None:
liyinhao's avatar
liyinhao committed
220
        database_save_path = osp.join(data_path, f'{info_prefix}_gt_database')
zhangwenwei's avatar
zhangwenwei committed
221
    if db_info_save_path is None:
liyinhao's avatar
liyinhao committed
222
223
        db_info_save_path = osp.join(data_path,
                                     f'{info_prefix}_dbinfos_train.pkl')
zhangwenwei's avatar
zhangwenwei committed
224
225
226
227
228
229
230
231
232
233
234
235
    mmcv.mkdir_or_exist(database_save_path)
    all_db_infos = dict()
    if with_mask:
        coco = COCO(osp.join(data_path, mask_anno_path))
        imgIds = coco.getImgIds()
        file2id = dict()
        for i in imgIds:
            info = coco.loadImgs([i])[0]
            file2id.update({info['file_name']: i})

    group_counter = 0
    for j in track_iter_progress(list(range(len(dataset)))):
liyinhao's avatar
liyinhao committed
236
237
238
239
240
        input_dict = dataset.get_data_info(j)
        dataset.pre_pipeline(input_dict)
        example = dataset.pipeline(input_dict)
        annos = example['ann_info']
        image_idx = example['sample_idx']
meng-zha's avatar
meng-zha committed
241
        points = example['points'].tensor.numpy()
liyinhao's avatar
liyinhao committed
242
        gt_boxes_3d = annos['gt_bboxes_3d'].tensor.numpy()
zhangwenwei's avatar
zhangwenwei committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        names = annos['gt_names']
        group_dict = dict()
        if 'group_ids' in annos:
            group_ids = annos['group_ids']
        else:
            group_ids = np.arange(gt_boxes_3d.shape[0], dtype=np.int64)
        difficulty = np.zeros(gt_boxes_3d.shape[0], dtype=np.int32)
        if 'difficulty' in annos:
            difficulty = annos['difficulty']

        num_obj = gt_boxes_3d.shape[0]
        point_indices = box_np_ops.points_in_rbbox(points, gt_boxes_3d)

        if with_mask:
            # prepare masks
            gt_boxes = annos['gt_bboxes']
liyinhao's avatar
liyinhao committed
259
            img_path = osp.split(example['img_info']['filename'])[-1]
zhangwenwei's avatar
zhangwenwei committed
260
            if img_path not in file2id.keys():
liyinhao's avatar
liyinhao committed
261
                print(f'skip image {img_path} for empty mask')
zhangwenwei's avatar
zhangwenwei committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
                continue
            img_id = file2id[img_path]
            kins_annIds = coco.getAnnIds(imgIds=img_id)
            kins_raw_info = coco.loadAnns(kins_annIds)
            kins_ann_info = _parse_coco_ann_info(kins_raw_info)
            h, w = annos['img_shape'][:2]
            gt_masks = [
                _poly2mask(mask, h, w) for mask in kins_ann_info['masks']
            ]
            # get mask inds based on iou mapping
            bbox_iou = bbox_overlaps(kins_ann_info['bboxes'], gt_boxes)
            mask_inds = bbox_iou.argmax(axis=0)
            valid_inds = (bbox_iou.max(axis=0) > 0.5)

            # mask the image
            # use more precise crop when it is ready
            # object_img_patches = np.ascontiguousarray(
            #     np.stack(object_img_patches, axis=0).transpose(0, 3, 1, 2))
            # crop image patches using roi_align
            # object_img_patches = crop_image_patch_v2(
            #     torch.Tensor(gt_boxes),
            #     torch.Tensor(mask_inds).long(), object_img_patches)
            object_img_patches, object_masks = crop_image_patch(
                gt_boxes, gt_masks, mask_inds, annos['img'])

        for i in range(num_obj):
            filename = f'{image_idx}_{names[i]}_{i}.bin'
liyinhao's avatar
liyinhao committed
289
290
            abs_filepath = osp.join(database_save_path, filename)
            rel_filepath = osp.join(f'{info_prefix}_gt_database', filename)
zhangwenwei's avatar
zhangwenwei committed
291
292
293
294
295
296
297
298
299

            # save point clouds and image patches for each object
            gt_points = points[point_indices[:, i]]
            gt_points[:, :3] -= gt_boxes_3d[i, :3]

            if with_mask:
                if object_masks[i].sum() == 0 or not valid_inds[i]:
                    # Skip object for empty or invalid mask
                    continue
liyinhao's avatar
liyinhao committed
300
301
                img_patch_path = abs_filepath + '.png'
                mask_patch_path = abs_filepath + '.mask.png'
zhangwenwei's avatar
zhangwenwei committed
302
303
304
                mmcv.imwrite(object_img_patches[i], img_patch_path)
                mmcv.imwrite(object_masks[i], mask_patch_path)

liyinhao's avatar
liyinhao committed
305
            with open(abs_filepath, 'w') as f:
zhangwenwei's avatar
zhangwenwei committed
306
307
308
309
310
                gt_points.tofile(f)

            if (used_classes is None) or names[i] in used_classes:
                db_info = {
                    'name': names[i],
liyinhao's avatar
liyinhao committed
311
                    'path': rel_filepath,
zhangwenwei's avatar
zhangwenwei committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
                    'image_idx': image_idx,
                    'gt_idx': i,
                    'box3d_lidar': gt_boxes_3d[i],
                    'num_points_in_gt': gt_points.shape[0],
                    'difficulty': difficulty[i],
                }
                local_group_id = group_ids[i]
                # if local_group_id >= 0:
                if local_group_id not in group_dict:
                    group_dict[local_group_id] = group_counter
                    group_counter += 1
                db_info['group_id'] = group_dict[local_group_id]
                if 'score' in annos:
                    db_info['score'] = annos['score'][i]
                if with_mask:
                    db_info.update({'box2d_camera': gt_boxes[i]})
                if names[i] in all_db_infos:
                    all_db_infos[names[i]].append(db_info)
                else:
                    all_db_infos[names[i]] = [db_info]

    for k, v in all_db_infos.items():
        print(f'load {len(v)} {k} database infos')

    with open(db_info_save_path, 'wb') as f:
        pickle.dump(all_db_infos, f)