customize_models.md 16.2 KB
Newer Older
Wenwei Zhang's avatar
Wenwei Zhang committed
1
# 教程 4: 自定义模型
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

我们通常把模型的各个组成成分分成6种类型:

- 编码器(encoder):包括 voxel layer、voxel encoder 和 middle encoder 等进入 backbone 前所使用的基于 voxel 的方法,如 HardVFE 和 PointPillarsScatter。
- 骨干网络(backbone):通常采用 FCN 网络来提取特征图,如 ResNet 和 SECOND。
- 颈部网络(neck):位于 backbones 和 heads 之间的组成模块,如 FPN 和 SECONDFPN。
- 检测头(head):用于特定任务的组成模块,如检测框的预测和掩码的预测。
- RoI 提取器(RoI extractor):用于从特征图中提取 RoI 特征的组成模块,如 H3DRoIHead 和 PartAggregationROIHead。
- 损失函数(loss):heads 中用于计算损失函数的组成模块,如 FocalLoss、L1Loss 和 GHMLoss。

## 开发新的组成模块

### 添加新建 encoder

接下来我们以 HardVFE 为例展示如何开发新的组成模块。

#### 1. 定义一个新的 voxel encoder(如 HardVFE:即 DV-SECOND 中所提出的 Voxel 特征提取器)

创建一个新文件 `mmdet3d/models/voxel_encoders/voxel_encoder.py`

```python
import torch.nn as nn

from ..builder import VOXEL_ENCODERS


@VOXEL_ENCODERS.register_module()
class HardVFE(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass
```

#### 2. 导入新建模块

用户可以通过添加下面这行代码到 `mmdet3d/models/voxel_encoders/__init__.py`

```python
from .voxel_encoder import HardVFE
```

或者添加以下的代码到配置文件中,从而能够在避免修改源码的情况下导入新建模块。

```python
custom_imports = dict(
    imports=['mmdet3d.models.voxel_encoders.HardVFE'],
    allow_failed_imports=False)
```

#### 3. 在配置文件中使用 voxel encoder

```python
model = dict(
    ...
    voxel_encoder=dict(
        type='HardVFE',
        arg1=xxx,
        arg2=xxx),
    ...
```

### 添加新建 backbone

接下来我们以 [SECOND](https://www.mdpi.com/1424-8220/18/10/3337)(Sparsely Embedded Convolutional Detection) 为例展示如何开发新的组成模块。

#### 1. 定义一个新的 backbone(如 SECOND)

创建一个新文件 `mmdet3d/models/backbones/second.py`

```python
import torch.nn as nn

from ..builder import BACKBONES


@BACKBONES.register_module()
class SECOND(BaseModule):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass
```

#### 2. 导入新建模块

用户可以通过添加下面这行代码到 `mmdet3d/models/backbones/__init__.py`

```python
from .second import SECOND
```

或者添加以下的代码到配置文件中,从而能够在避免修改源码的情况下导入新建模块。

```python
custom_imports = dict(
    imports=['mmdet3d.models.backbones.second'],
    allow_failed_imports=False)
```

#### 3. 在配置文件中使用 backbone

```python
model = dict(
    ...
    backbone=dict(
        type='SECOND',
        arg1=xxx,
        arg2=xxx),
    ...
```

### 添加新建 necks

#### 1. 定义一个新的 neck(如 SECONDFPN)

创建一个新文件 `mmdet3d/models/necks/second_fpn.py`

```python
from ..builder import NECKS

@NECKS.register
class SECONDFPN(BaseModule):

    def __init__(self,
                 in_channels=[128, 128, 256],
                 out_channels=[256, 256, 256],
                 upsample_strides=[1, 2, 4],
                 norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
                 upsample_cfg=dict(type='deconv', bias=False),
                 conv_cfg=dict(type='Conv2d', bias=False),
                 use_conv_for_no_stride=False,
                 init_cfg=None):
        pass

    def forward(self, X):
        # implementation is ignored
        pass
```

#### 2. 导入新建模块

用户可以通过添加下面这行代码到 `mmdet3D/models/necks/__init__.py`

```python
from .second_fpn import SECONDFPN
```

或者添加以下的代码到配置文件中,从而能够在避免修改源码的情况下导入新建模块。

```python
custom_imports = dict(
    imports=['mmdet3d.models.necks.second_fpn'],
    allow_failed_imports=False)
```

#### 3. 在配置文件中使用 neck

```python
model = dict(
    ...
    neck=dict(
        type='SECONDFPN',
        in_channels=[64, 128, 256],
        upsample_strides=[1, 2, 4],
        out_channels=[128, 128, 128]),
    ...
```

### 添加新建 heads

接下来我们以 [PartA2 Head](https://arxiv.org/abs/1907.03670) 为例展示如何开发新的组成模块。

**注意**:此处展示的 PartA2 RoI Head 将应用于双阶段检测器中,对于单阶段检测器,请参考 `mmdet3d/models/dense_heads/` 中所展示的例子。由于这些 heads 简单高效,因此这些 heads 普遍应用在自动驾驶场景下的 3D 检测任务中。

首先,在 `mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py` 中创建一个新的 bbox head。
PartA2 RoI Head 实现一个新的 bbox head ,并用于目标检测的任务中。
为了实现一个新的 bbox head,通常需要在其中实现三个功能,如下所示,有时该模块还需要实现其他相关的功能,如 `loss``get_targets`

```python
from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead

@HEADS.register_module()
class PartA2BboxHead(BaseModule):
    """PartA2 RoI head."""

    def __init__(self,
                 num_classes,
                 seg_in_channels,
                 part_in_channels,
                 seg_conv_channels=None,
                 part_conv_channels=None,
                 merge_conv_channels=None,
                 down_conv_channels=None,
                 shared_fc_channels=None,
                 cls_channels=None,
                 reg_channels=None,
                 dropout_ratio=0.1,
                 roi_feat_size=14,
                 with_corner_loss=True,
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='none',
                     loss_weight=1.0),
                 init_cfg=None):
        super(PartA2BboxHead, self).__init__(init_cfg=init_cfg)

    def forward(self, seg_feats, part_feats):

```

其次,如果有必要的话,用户还需要实现一个新的 RoI Head,此处我们从 `Base3DRoIHead` 中继承得到一个新类 `PartAggregationROIHead`,此时我们就能发现 `Base3DRoIHead` 已经实现了下面的功能:

```python
from abc import ABCMeta, abstractmethod
from torch import nn as nn


@HEADS.register_module()
class Base3DRoIHead(BaseModule, metaclass=ABCMeta):
    """Base class for 3d RoIHeads."""

    def __init__(self,
                 bbox_head=None,
                 mask_roi_extractor=None,
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None):

    @property
    def with_bbox(self):

    @property
    def with_mask(self):

    @abstractmethod
    def init_weights(self, pretrained):

    @abstractmethod
    def init_bbox_head(self):

    @abstractmethod
    def init_mask_head(self):

    @abstractmethod
    def init_assigner_sampler(self):

    @abstractmethod
    def forward_train(self,
                      x,
                      img_metas,
                      proposal_list,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      **kwargs):

    def simple_test(self,
                    x,
                    proposal_list,
                    img_metas,
                    proposals=None,
                    rescale=False,
                    **kwargs):
        """Test without augmentation."""
        pass

    def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs):
        """Test with augmentations.
        If rescale is False, then returned bboxes and masks will fit the scale
        of imgs[0].
        """
        pass

```

接着将会对 bbox_forward 的逻辑进行修改,同时,bbox_forward 还会继承来自 `Base3DRoIHead` 的其他逻辑,在 `mmdet3d/models/roi_heads/part_aggregation_roi_head.py` 中,我们实现了新的 RoI Head,如下所示:

```python
from torch.nn import functional as F

from mmdet3d.core import AssignResult
from mmdet3d.core.bbox import bbox3d2result, bbox3d2roi
from mmdet.core import build_assigner, build_sampler
from mmdet.models import HEADS
from ..builder import build_head, build_roi_extractor
from .base_3droi_head import Base3DRoIHead


@HEADS.register_module()
class PartAggregationROIHead(Base3DRoIHead):
    """Part aggregation roi head for PartA2.
    Args:
        semantic_head (ConfigDict): Config of semantic head.
        num_classes (int): The number of classes.
        seg_roi_extractor (ConfigDict): Config of seg_roi_extractor.
        part_roi_extractor (ConfigDict): Config of part_roi_extractor.
        bbox_head (ConfigDict): Config of bbox_head.
        train_cfg (ConfigDict): Training config.
        test_cfg (ConfigDict): Testing config.
    """

    def __init__(self,
                 semantic_head,
                 num_classes=3,
                 seg_roi_extractor=None,
                 part_roi_extractor=None,
                 bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None):
        super(PartAggregationROIHead, self).__init__(
            bbox_head=bbox_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)
        self.num_classes = num_classes
        assert semantic_head is not None
        self.semantic_head = build_head(semantic_head)

        if seg_roi_extractor is not None:
            self.seg_roi_extractor = build_roi_extractor(seg_roi_extractor)
        if part_roi_extractor is not None:
            self.part_roi_extractor = build_roi_extractor(part_roi_extractor)

        self.init_assigner_sampler()

    def _bbox_forward(self, seg_feats, part_feats, voxels_dict, rois):
        """Forward function of roi_extractor and bbox_head used in both
        training and testing.
        Args:
            seg_feats (torch.Tensor): Point-wise semantic features.
            part_feats (torch.Tensor): Point-wise part prediction features.
            voxels_dict (dict): Contains information of voxels.
            rois (Tensor): Roi boxes.
        Returns:
            dict: Contains predictions of bbox_head and
                features of roi_extractor.
        """
        pooled_seg_feats = self.seg_roi_extractor(seg_feats,
                                                  voxels_dict['voxel_centers'],
                                                  voxels_dict['coors'][..., 0],
                                                  rois)
        pooled_part_feats = self.part_roi_extractor(
            part_feats, voxels_dict['voxel_centers'],
            voxels_dict['coors'][..., 0], rois)
        cls_score, bbox_pred = self.bbox_head(pooled_seg_feats,
                                              pooled_part_feats)

        bbox_results = dict(
            cls_score=cls_score,
            bbox_pred=bbox_pred,
            pooled_seg_feats=pooled_seg_feats,
            pooled_part_feats=pooled_part_feats)
        return bbox_results
```

此处我们省略了与其他功能相关的细节,请参考 [此处](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/models/roi_heads/part_aggregation_roi_head.py) 获取更多细节。

最后,用户需要在 `mmdet3d/models/bbox_heads/__init__.py``mmdet3d/models/roi_heads/__init__.py` 中添加新模块,使得对应的注册器能够发现并加载该模块。

此外,用户也可以添加以下的代码到配置文件中,从而实现相同的目标。

```python
custom_imports=dict(
    imports=['mmdet3d.models.roi_heads.part_aggregation_roi_head', 'mmdet3d.models.roi_heads.bbox_heads.parta2_bbox_head'])
```

PartAggregationROIHead 的配置文件如下所示:

```python
model = dict(
    ...
    roi_head=dict(
        type='PartAggregationROIHead',
        num_classes=3,
        semantic_head=dict(
            type='PointwiseSemanticHead',
            in_channels=16,
            extra_width=0.2,
            seg_score_thr=0.3,
            num_classes=3,
            loss_seg=dict(
                type='FocalLoss',
                use_sigmoid=True,
                reduction='sum',
                gamma=2.0,
                alpha=0.25,
                loss_weight=1.0),
            loss_part=dict(
                type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
        seg_roi_extractor=dict(
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='max')),
        part_roi_extractor=dict(
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='avg')),
        bbox_head=dict(
            type='PartA2BboxHead',
            num_classes=3,
            seg_in_channels=16,
            part_in_channels=4,
            seg_conv_channels=[64, 64],
            part_conv_channels=[64, 64],
            merge_conv_channels=[128, 128],
            down_conv_channels=[128, 256],
            bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
            shared_fc_channels=[256, 512, 512, 512],
            cls_channels=[256, 256],
            reg_channels=[256, 256],
            dropout_ratio=0.1,
            roi_feat_size=14,
            with_corner_loss=True,
            loss_bbox=dict(
                type='SmoothL1Loss',
                beta=1.0 / 9.0,
                reduction='sum',
                loss_weight=1.0),
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=True,
                reduction='sum',
                loss_weight=1.0)))
    ...
    )
```

MMDetection 2.0 支持配置文件之间的继承,使得用户能够更加关注自己的配置文件的修改。
PartA2 Head 的第二阶段主要使用新建的 `PartAggregationROIHead``PartA2BboxHead`,需要根据对应模块的 `__init__` 参数来设置对应的参数。

### 添加新建 loss

假定用户想要新添一个用于检测框回归的 loss,并命名为 `MyLoss`
为了添加一个新的 loss ,用于需要在 `mmdet3d/models/losses/my_loss.py` 中实现对应的逻辑。
装饰器 `weighted_loss` 能够保证对 batch 中每个样本的 loss 进行加权平均。

```python
import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weighted_loss

@weighted_loss
def my_loss(pred, target):
    assert pred.size() == target.size() and target.numel() > 0
    loss = torch.abs(pred - target)
    return loss

@LOSSES.register_module()
class MyLoss(nn.Module):

    def __init__(self, reduction='mean', loss_weight=1.0):
        super(MyLoss, self).__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * my_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss_bbox
```

接着,用户需要将 loss 添加到 `mmdet3d/models/losses/__init__.py`

```python
from .my_loss import MyLoss, my_loss

```

此外,用户也可以添加以下的代码到配置文件中,从而实现相同的目标。

```python
custom_imports=dict(
    imports=['mmdet3d.models.losses.my_loss'])
```

为了使用该 loss,需要对 `loss_xxx` 域进行修改。
因为 MyLoss 主要用于检测框的回归,因此需要在对应的 head 中修改 `loss_bbox` 域的值。

```python
loss_bbox=dict(type='MyLoss', loss_weight=1.0))
```