kitti_dataset.py 29.1 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import copy
import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
4
5
import os
import tempfile
zhangwenwei's avatar
zhangwenwei committed
6
import torch
zhangwenwei's avatar
zhangwenwei committed
7
from mmcv.utils import print_log
zhangwenwei's avatar
zhangwenwei committed
8
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
9

zhangwenwei's avatar
zhangwenwei committed
10
from mmdet.datasets import DATASETS
11
from ..core import show_multi_modality_result, show_result
12
from ..core.bbox import (Box3DMode, CameraInstance3DBoxes, Coord3DMode,
13
                         LiDARInstance3DBoxes, points_cam2img)
zhangwenwei's avatar
zhangwenwei committed
14
from .custom_3d import Custom3DDataset
zhangwenwei's avatar
zhangwenwei committed
15
16


17
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
18
class KittiDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
19
    r"""KITTI Dataset.
wangtai's avatar
wangtai committed
20

zhangwenwei's avatar
zhangwenwei committed
21
22
    This class serves as the API for experiments on the `KITTI Dataset
    <http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d>`_.
wangtai's avatar
wangtai committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        split (str): Split of input data.
        pts_prefix (str, optional): Prefix of points files.
            Defaults to 'velodyne'.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes

wangtai's avatar
wangtai committed
41
42
43
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
44
45
46
47
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
Wenwei Zhang's avatar
Wenwei Zhang committed
48
49
        pcd_limit_range (list): The range of point cloud used to filter
            invalid predicted boxes. Default: [0, -40, -3, 70.4, 40, 0.0].
wangtai's avatar
wangtai committed
50
    """
zhangwenwei's avatar
zhangwenwei committed
51
52
53
    CLASSES = ('car', 'pedestrian', 'cyclist')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
54
                 data_root,
zhangwenwei's avatar
zhangwenwei committed
55
56
                 ann_file,
                 split,
zhangwenwei's avatar
zhangwenwei committed
57
                 pts_prefix='velodyne',
zhangwenwei's avatar
zhangwenwei committed
58
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
59
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
60
                 modality=None,
61
62
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
Wenwei Zhang's avatar
Wenwei Zhang committed
63
64
                 test_mode=False,
                 pcd_limit_range=[0, -40, -3, 70.4, 40, 0.0]):
zhangwenwei's avatar
zhangwenwei committed
65
66
67
68
69
70
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
71
72
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
73
74
            test_mode=test_mode)

Wenwei Zhang's avatar
Wenwei Zhang committed
75
        self.split = split
zhangwenwei's avatar
zhangwenwei committed
76
        self.root_split = os.path.join(self.data_root, split)
zhangwenwei's avatar
zhangwenwei committed
77
        assert self.modality is not None
Wenwei Zhang's avatar
Wenwei Zhang committed
78
        self.pcd_limit_range = pcd_limit_range
zhangwenwei's avatar
zhangwenwei committed
79
        self.pts_prefix = pts_prefix
zhangwenwei's avatar
zhangwenwei committed
80

zhangwenwei's avatar
zhangwenwei committed
81
    def _get_pts_filename(self, idx):
82
83
84
85
86
87
88
89
        """Get point cloud filename according to the given index.

        Args:
            index (int): Index of the point cloud file to get.

        Returns:
            str: Name of the point cloud file.
        """
zhangwenwei's avatar
zhangwenwei committed
90
91
92
        pts_filename = osp.join(self.root_split, self.pts_prefix,
                                f'{idx:06d}.bin')
        return pts_filename
zhangwenwei's avatar
zhangwenwei committed
93

zhangwenwei's avatar
zhangwenwei committed
94
    def get_data_info(self, index):
95
96
97
98
99
100
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
101
102
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:
103

wangtai's avatar
wangtai committed
104
105
106
107
108
109
110
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - img_prefix (str | None): Prefix of image files.
                - img_info (dict): Image info.
                - lidar2img (list[np.ndarray], optional): Transformations \
                    from lidar to different cameras.
                - ann_info (dict): Annotation info.
111
        """
zhangwenwei's avatar
zhangwenwei committed
112
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
113
        sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
114
        img_filename = os.path.join(self.data_root,
zhangwenwei's avatar
zhangwenwei committed
115
116
                                    info['image']['image_path'])

zhangwenwei's avatar
zhangwenwei committed
117
118
119
120
121
122
        # TODO: consider use torch.Tensor only
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c

zhangwenwei's avatar
zhangwenwei committed
123
        pts_filename = self._get_pts_filename(sample_idx)
zhangwenwei's avatar
zhangwenwei committed
124
125
        input_dict = dict(
            sample_idx=sample_idx,
zhangwenwei's avatar
zhangwenwei committed
126
            pts_filename=pts_filename,
zhangwenwei's avatar
zhangwenwei committed
127
128
            img_prefix=None,
            img_info=dict(filename=img_filename),
zhangwenwei's avatar
zhangwenwei committed
129
130
131
            lidar2img=lidar2img)

        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
132
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
133
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
134
135
136
137

        return input_dict

    def get_ann_info(self, index):
138
139
140
141
142
143
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
144
            dict: annotation information consists of the following keys:
145

zhangwenwei's avatar
zhangwenwei committed
146
                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): \
wangtai's avatar
wangtai committed
147
148
149
150
151
                    3D ground truth bboxes.
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - gt_bboxes (np.ndarray): 2D ground truth bboxes.
                - gt_labels (np.ndarray): Labels of ground truths.
                - gt_names (list[str]): Class names of ground truths.
152
        """
zhangwenwei's avatar
zhangwenwei committed
153
        # Use index to get the annos, thus the evalhook could also use this api
zhangwenwei's avatar
zhangwenwei committed
154
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
155
156
157
158
159
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)

        annos = info['annos']
        # we need other objects to avoid collision when sample
160
        annos = self.remove_dontcare(annos)
zhangwenwei's avatar
zhangwenwei committed
161
162
163
164
165
166
        loc = annos['location']
        dims = annos['dimensions']
        rots = annos['rotation_y']
        gt_names = annos['name']
        gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                      axis=1).astype(np.float32)
167
168
169

        # convert gt_bboxes_3d to velodyne coordinates
        gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
170
            self.box_mode_3d, np.linalg.inv(rect @ Trv2c))
zhangwenwei's avatar
zhangwenwei committed
171
172
173
174
175
176
177
178
179
180
181
182
        gt_bboxes = annos['bbox']

        selected = self.drop_arrays_by_name(gt_names, ['DontCare'])
        gt_bboxes = gt_bboxes[selected].astype('float32')
        gt_names = gt_names[selected]

        gt_labels = []
        for cat in gt_names:
            if cat in self.CLASSES:
                gt_labels.append(self.CLASSES.index(cat))
            else:
                gt_labels.append(-1)
Wenwei Zhang's avatar
Wenwei Zhang committed
183
        gt_labels = np.array(gt_labels).astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
184
        gt_labels_3d = copy.deepcopy(gt_labels)
zhangwenwei's avatar
zhangwenwei committed
185
186
187

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
188
            gt_labels_3d=gt_labels_3d,
zhangwenwei's avatar
zhangwenwei committed
189
            bboxes=gt_bboxes,
liyinhao's avatar
liyinhao committed
190
191
            labels=gt_labels,
            gt_names=gt_names)
zhangwenwei's avatar
zhangwenwei committed
192
193
194
        return anns_results

    def drop_arrays_by_name(self, gt_names, used_classes):
195
196
197
198
199
200
201
202
203
        """Drop irrelevant ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be dropped.
        """
zhangwenwei's avatar
zhangwenwei committed
204
205
206
207
208
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
209
210
211
212
213
214
215
216
217
        """Keep useful ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be keeped.
        """
zhangwenwei's avatar
zhangwenwei committed
218
219
220
221
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

222
    def remove_dontcare(self, ann_info):
223
224
225
226
227
228
229
230
231
        """Remove annotations that do not need to be cared.

        Args:
            ann_info (dict): Dict of annotation infos. The ``'DontCare'``
                annotations will be removed according to ann_file['name'].

        Returns:
            dict: Annotations after filtering.
        """
232
233
234
235
236
237
238
239
240
        img_filtered_annotations = {}
        relevant_annotation_indices = [
            i for i, x in enumerate(ann_info['name']) if x != 'DontCare'
        ]
        for key in ann_info.keys():
            img_filtered_annotations[key] = (
                ann_info[key][relevant_annotation_indices])
        return img_filtered_annotations

241
242
243
244
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
245
246
247
248
249
250
251
252
253
254
255
256
257
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            submission_prefix (str | None): The prefix of submitted files. It
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
258
259
            tuple: (result_files, tmp_dir), result_files is a dict containing \
                the json filepaths, tmp_dir is the temporal directory created \
260
261
                for saving json files when jsonfile_prefix is not specified.
        """
262
263
264
265
266
267
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

zhangwenwei's avatar
zhangwenwei committed
268
        if not isinstance(outputs[0], dict):
zhangwenwei's avatar
zhangwenwei committed
269
            result_files = self.bbox2result_kitti2d(outputs, self.CLASSES,
zhangwenwei's avatar
zhangwenwei committed
270
                                                    pklfile_prefix,
271
                                                    submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0]:
            result_files = dict()
            for name in outputs[0]:
                results_ = [out[name] for out in outputs]
                pklfile_prefix_ = pklfile_prefix + name
                if submission_prefix is not None:
                    submission_prefix_ = submission_prefix + name
                else:
                    submission_prefix_ = None
                if 'img' in name:
                    result_files = self.bbox2result_kitti2d(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                else:
                    result_files_ = self.bbox2result_kitti(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                result_files[name] = result_files_
zhangwenwei's avatar
zhangwenwei committed
290
        else:
zhangwenwei's avatar
zhangwenwei committed
291
            result_files = self.bbox2result_kitti(outputs, self.CLASSES,
292
293
                                                  pklfile_prefix,
                                                  submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
294
        return result_files, tmp_dir
zhangwenwei's avatar
zhangwenwei committed
295

296
297
298
299
300
    def evaluate(self,
                 results,
                 metric=None,
                 logger=None,
                 pklfile_prefix=None,
liyinhao's avatar
liyinhao committed
301
302
303
                 submission_prefix=None,
                 show=False,
                 out_dir=None):
304
305
306
        """Evaluation in KITTI protocol.

        Args:
wangtai's avatar
wangtai committed
307
            results (list[dict]): Testing results of the dataset.
308
309
310
311
312
313
314
315
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            submission_prefix (str | None): The prefix of submission datas.
                If not specified, the submission data will not be generated.
liyinhao's avatar
liyinhao committed
316
317
318
319
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
320
321

        Returns:
wangtai's avatar
wangtai committed
322
            dict[str, float]: Results of each evaluation metric.
323
324
        """
        result_files, tmp_dir = self.format_results(results, pklfile_prefix)
zhangwenwei's avatar
zhangwenwei committed
325
        from mmdet3d.core.evaluation import kitti_eval
zhangwenwei's avatar
zhangwenwei committed
326
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

        if isinstance(result_files, dict):
            ap_dict = dict()
            for name, result_files_ in result_files.items():
                eval_types = ['bbox', 'bev', '3d']
                if 'img' in name:
                    eval_types = ['bbox']
                ap_result_str, ap_dict_ = kitti_eval(
                    gt_annos,
                    result_files_,
                    self.CLASSES,
                    eval_types=eval_types)
                for ap_type, ap in ap_dict_.items():
                    ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap))

                print_log(
                    f'Results of {name}:\n' + ap_result_str, logger=logger)

zhangwenwei's avatar
zhangwenwei committed
345
        else:
zhangwenwei's avatar
zhangwenwei committed
346
347
348
349
350
351
352
353
            if metric == 'img_bbox':
                ap_result_str, ap_dict = kitti_eval(
                    gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
            else:
                ap_result_str, ap_dict = kitti_eval(gt_annos, result_files,
                                                    self.CLASSES)
            print_log('\n' + ap_result_str, logger=logger)

354
355
        if tmp_dir is not None:
            tmp_dir.cleanup()
liyinhao's avatar
liyinhao committed
356
357
        if show:
            self.show(results, out_dir)
358
        return ap_dict
359
360
361
362
363
364

    def bbox2result_kitti(self,
                          net_outputs,
                          class_names,
                          pklfile_prefix=None,
                          submission_prefix=None):
365
366
367
368
369
370
371
372
373
374
375
376
377
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
            net_outputs (list[np.ndarray]): List of array storing the \
                inferenced bounding boxes and scores.
            class_names (list[String]): A list of class names.
            pklfile_prefix (str | None): The prefix of pkl file.
            submission_prefix (str | None): The prefix of submission file.

        Returns:
            list[dict]: A list of dictionaries with the kitti format.
        """
Wenwei Zhang's avatar
Wenwei Zhang committed
378
379
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
380
381
        if submission_prefix is not None:
            mmcv.mkdir_or_exist(submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
382
383

        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
384
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
385
386
387
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
zhangwenwei's avatar
zhangwenwei committed
388
            info = self.data_infos[idx]
zhangwenwei's avatar
zhangwenwei committed
389
            sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
390
            image_shape = info['image']['image_shape'][:2]
zhangwenwei's avatar
zhangwenwei committed
391
            box_dict = self.convert_valid_bboxes(pred_dicts, info)
xiliu8006's avatar
xiliu8006 committed
392
393
394
395
396
397
398
399
400
401
402
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
zhangwenwei's avatar
zhangwenwei committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)
            else:
xiliu8006's avatar
xiliu8006 committed
429
                anno = {
zhangwenwei's avatar
zhangwenwei committed
430
431
432
433
434
435
436
437
438
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
xiliu8006's avatar
xiliu8006 committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
                }
                annos.append(anno)

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)

zhangwenwei's avatar
zhangwenwei committed
462
463
            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * len(annos[-1]['score']), dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
464
465
466

            det_annos += annos

467
468
469
        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
zhangwenwei's avatar
zhangwenwei committed
470
            mmcv.dump(det_annos, out)
Wenwei Zhang's avatar
Wenwei Zhang committed
471
            print(f'Result is saved to {out}.')
zhangwenwei's avatar
zhangwenwei committed
472
473
474
475
476
477

        return det_annos

    def bbox2result_kitti2d(self,
                            net_outputs,
                            class_names,
478
479
                            pklfile_prefix=None,
                            submission_prefix=None):
zhangwenwei's avatar
zhangwenwei committed
480
481
        """Convert 2D detection results to kitti format for evaluation and test
        submission.
zhangwenwei's avatar
zhangwenwei committed
482
483

        Args:
484
485
486
            net_outputs (list[np.ndarray]): List of array storing the \
                inferenced bounding boxes and scores.
            class_names (list[String]): A list of class names.
487
488
            pklfile_prefix (str | None): The prefix of pkl file.
            submission_prefix (str | None): The prefix of submission file.
zhangwenwei's avatar
zhangwenwei committed
489

490
        Returns:
491
            list[dict]: A list of dictionaries have the kitti format
zhangwenwei's avatar
zhangwenwei committed
492
        """
Wenwei Zhang's avatar
Wenwei Zhang committed
493
494
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
zhangwenwei's avatar
zhangwenwei committed
495
        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
496
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
497
498
499
500
501
502
503
504
505
506
507
508
509
        for i, bboxes_per_sample in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
zhangwenwei's avatar
zhangwenwei committed
510
            sample_idx = self.data_infos[i]['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

            num_example = 0
            for label in range(len(bboxes_per_sample)):
                bbox = bboxes_per_sample[label]
                for i in range(bbox.shape[0]):
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(0.0)
                    anno['bbox'].append(bbox[i, :4])
                    # set dimensions (height, width, length) to zero
                    anno['dimensions'].append(
                        np.zeros(shape=[3], dtype=np.float32))
                    # set the 3D translation to (-1000, -1000, -1000)
                    anno['location'].append(
                        np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                    anno['rotation_y'].append(0.0)
                    anno['score'].append(bbox[i, 4])
                    num_example += 1

            if num_example == 0:
                annos.append(
                    dict(
                        name=np.array([]),
                        truncated=np.array([]),
                        occluded=np.array([]),
                        alpha=np.array([]),
                        bbox=np.zeros([0, 4]),
                        dimensions=np.zeros([0, 3]),
                        location=np.zeros([0, 3]),
                        rotation_y=np.array([]),
                        score=np.array([]),
                    ))
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * num_example, dtype=np.int64)
            det_annos += annos

552
553
554
555
556
557
558
559
        if pklfile_prefix is not None:
            # save file in pkl format
            pklfile_path = (
                pklfile_prefix[:-4] if pklfile_prefix.endswith(
                    ('.pkl', '.pickle')) else pklfile_prefix)
            mmcv.dump(det_annos, pklfile_path)

        if submission_prefix is not None:
zhangwenwei's avatar
zhangwenwei committed
560
            # save file in submission format
561
562
            mmcv.mkdir_or_exist(submission_prefix)
            print(f'Saving KITTI submission to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
563
            for i, anno in enumerate(det_annos):
zhangwenwei's avatar
zhangwenwei committed
564
                sample_idx = self.data_infos[i]['image']['image_idx']
565
                cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt'
zhangwenwei's avatar
zhangwenwei committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
583
            print(f'Result is saved to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
584
585
586
587

        return det_annos

    def convert_valid_bboxes(self, box_dict, info):
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
        """Convert the predicted boxes into valid ones.

        Args:
            box_dict (dict): Box dictionaries to be converted.

                - boxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bounding boxes.
                - scores_3d (torch.Tensor): Scores of boxes.
                - labels_3d (torch.Tensor): Class labels of boxes.
            info (dict): Data info.

        Returns:
            dict: Valid predicted boxes.

                - bbox (np.ndarray): 2D bounding boxes.
                - box3d_camera (np.ndarray): 3D bounding boxes in \
                    camera coordinate.
                - box3d_lidar (np.ndarray): 3D bounding boxes in \
                    LiDAR coordinate.
                - scores (np.ndarray): Scores of boxes.
                - label_preds (np.ndarray): Class label predictions.
                - sample_idx (int): Sample index.
        """
zhangwenwei's avatar
zhangwenwei committed
610
        # TODO: refactor this function
611
612
613
        box_preds = box_dict['boxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
zhangwenwei's avatar
zhangwenwei committed
614
        sample_idx = info['image']['image_idx']
615
616
617
        # TODO: remove the hack of yaw
        box_preds.tensor[:, -1] = box_preds.tensor[:, -1] - np.pi
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)
zhangwenwei's avatar
zhangwenwei committed
618

619
        if len(box_preds) == 0:
zhangwenwei's avatar
zhangwenwei committed
620
            return dict(
621
622
623
624
625
626
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
627
628
629
630
631

        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        img_shape = info['image']['image_shape']
632
633
634
635
636
        P2 = box_preds.tensor.new_tensor(P2)

        box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c)

        box_corners = box_preds_camera.corners
zhangwenwei's avatar
zhangwenwei committed
637
        box_corners_in_image = points_cam2img(box_corners, P2)
zhangwenwei's avatar
zhangwenwei committed
638
639
640
641
642
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
643
644
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
twang's avatar
twang committed
645
646
647
        valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) &
                          (box_2d_preds[:, 1] < image_shape[0]) &
                          (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
648
649
650
651
        # check box_preds
        limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
        valid_pcd_inds = ((box_preds.center > limit_range[:3]) &
                          (box_preds.center < limit_range[3:]))
zhangwenwei's avatar
zhangwenwei committed
652
653
654
655
656
        valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
657
658
659
660
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
661
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
662
663
        else:
            return dict(
664
665
666
667
668
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
669
                sample_idx=sample_idx)
liyinhao's avatar
liyinhao committed
670

671
    def show(self, results, out_dir, show=True):
672
673
674
        """Results visualization.

        Args:
wangtai's avatar
wangtai committed
675
            results (list[dict]): List of bounding boxes results.
676
            out_dir (str): Output directory of visualization result.
677
            show (bool): Visualize the results online.
678
        """
liyinhao's avatar
liyinhao committed
679
680
        assert out_dir is not None, 'Expect out_dir, got none.'
        for i, result in enumerate(results):
liyinhao's avatar
liyinhao committed
681
            example = self.prepare_test_data(i)
liyinhao's avatar
liyinhao committed
682
683
684
            data_info = self.data_infos[i]
            pts_path = data_info['point_cloud']['velodyne_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
liyinhao's avatar
liyinhao committed
685
            # for now we convert points into depth mode
liyinhao's avatar
liyinhao committed
686
            points = example['points'][0]._data.numpy()
687
688
            points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
                                               Coord3DMode.DEPTH)
689
690
691
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
            show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                               Box3DMode.DEPTH)
liyinhao's avatar
liyinhao committed
692
            pred_bboxes = result['boxes_3d'].tensor.numpy()
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
            show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                                 Box3DMode.DEPTH)
            show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
                        file_name, show)

            # multi-modality visualization
            if self.modality['use_camera'] and \
                    'lidar2img' in example['img_metas'][0]._data.keys():
                img = mmcv.imread(example['img_metas'][0]._data['filename'])
                show_pred_bboxes = LiDARInstance3DBoxes(
                    pred_bboxes, origin=(0.5, 0.5, 0))
                show_gt_bboxes = LiDARInstance3DBoxes(
                    gt_bboxes, origin=(0.5, 0.5, 0))
                show_multi_modality_result(
                    img,
                    show_gt_bboxes,
                    show_pred_bboxes,
                    example['img_metas'][0]._data['lidar2img'],
                    out_dir,
                    file_name,
                    show=False)