changelog.md 10.7 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
## Changelog

twang's avatar
twang committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
### v0.11.0 (1/3/2021)

#### Highlights

- Support more friendly visualization interfaces based on open3d
- Support a faster and more memory-efficient implementation of DynamicScatter
- Refactor unit tests and details of configs

#### Bug Fixes

- Fix an unsupported bias setting in the unit test for centerpoint head (#304)
- Fix errors due to typos in the centerpoint head (#308)
- Fix a minor bug in [points_in_boxes.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/roiaware_pool3d/points_in_boxes.py) when tensors are not in the same device. (#317)
- Fix warning of deprecated usages of nonzero during training with pytorch 1.6 (#330)

#### New Features

- Support new visualization methods based on open3d (#284, #323)

#### Improvements

- Refactor unit tests (#303)
- Move the key `train_cfg` and `test_cfg` into the model configs (#307)
- Update [README](https://github.com/open-mmlab/mmdetection3d/blob/master/README.md) with [Chinese version](https://github.com/open-mmlab/mmdetection3d/blob/master/README_zh-CN.md) and [instructions for getting started](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/getting_started.md). (#310, #316)
- Support a faster and more memory-efficient implementation of DynamicScatter (#318, #326)

twang's avatar
twang committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
### v0.10.0 (1/2/2021)

#### Highlights

- Preliminary release of API for SemanticKITTI dataset.
- Documentation and demo enhancement for better user experience.
- Fix a number of underlying minor bugs and add some corresponding important unit tests.

#### Bug Fixes

- Fixed the issue of unpacking size in [furthest_point_sample.py](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/furthest_point_sample/furthest_point_sample.py) (#248)
- Fix bugs for 3DSSD triggered by empty ground truths (#258)
- Remove models without checkpoints in model zoo statistics of documentation (#259)
- Fix some unclear installation instructions in [getting_started.md](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/getting_started.md) (#269)
- Fix relative paths/links in the documentation (#271)
- Fix a minor bug in [scatter_points_cuda.cu](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/ops/voxel/src/scatter_points_cuda.cu) when num_features != 4 (#275)
- Fix the bug about missing text files when testing on KITTI (#278)
- Fix issues caused by inplace modification of tensors in `BaseInstance3DBoxes` (#283)
- Fix log analysis for evaluation and adjust the documentation accordingly (#285)

#### New Features

- Support SemanticKITTI dataset preliminarily (#287)

#### Improvements

- Add tag to README in configurations for specifying different uses (#262)
- Update instructions for evaluation metrics in the documentation (#265)
- Add nuImages entry in [README.md](https://github.com/open-mmlab/mmdetection3d/blob/master/README.md) and gif demo (#266, #268)
- Add unit test for voxelization (#275)

twang's avatar
twang committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
### v0.9.0 (31/12/2020)

#### Highlights

- Documentation refactoring with better structure, especially about how to implement new models and customized datasets.
- More compatible with refactored point structure by bug fixes in ground truth sampling.

#### Bug Fixes

- Fix point structure related bugs in ground truth sampling (#211)
- Fix loading points in ground truth sampling augmentation on nuScenes (#221)
- Fix channel setting in the SeparateHead of CenterPoint (#228)
- Fix evaluation for indoors 3D detection in case of less classes in prediction (#231)
- Remove unreachable lines in nuScenes data converter (#235)
- Minor adjustments of numpy implementation for perspective projection and prediction filtering criterion in KITTI evaluation (#241)

#### Improvements

- Documentation refactoring (#242)

twang's avatar
twang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
### v0.8.0 (30/11/2020)

#### Highlights

- Refactor points structure with more constructive and clearer implementation.
- Support axis-aligned IoU loss for VoteNet with better performance.
- Update and enhance [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark on Waymo.

#### New Features

- Support axis-aligned IoU loss for VoteNet. (#194)
- Support points structure for consistent processing of all the point related representation. (#196, #204)

#### Improvements

- Enhance [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark on Waymo with stronger baselines. (#166)
- Add model zoo statistics and polish the documentation. (#201)

twang's avatar
twang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
### v0.7.0 (1/11/2020)

#### Highlights

- Support a new method [SSN](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700579.pdf) with benchmarks on nuScenes and Lyft datasets.
- Update benchmarks for SECOND on Waymo, CenterPoint with TTA on nuScenes and models with mixed precision training on KITTI and nuScenes.
- Support semantic segmentation on nuImages and provide [HTC](https://arxiv.org/abs/1901.07518) models with configurations and performance for reference.

#### Bug Fixes

- Fix incorrect code weights in anchor3d_head when introducing mixed precision training (#173)
- Fix the incorrect label mapping on nuImages dataset (#155)

#### New Features

- Modified primitive head which can support the setting on SUN-RGBD dataset (#136)
- Support semantic segmentation and [HTC](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/nuimages) with models for reference on nuImages dataset (#155)
- Support [SSN](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/ssn) on nuScenes and Lyft datasets (#147, #174, #166, #182)
- Support double flip for test time augmentation of CenterPoint with updated benchmark (#143)

#### Improvements

- Update [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) benchmark with configurations for reference on Waymo (#166)
- Delete checkpoints on Waymo to comply its specific license agreement (#180)
- Update models and instructions with [mixed precision training](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/fp16) on KITTI and nuScenes (#178)

twang's avatar
twang committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
### v0.6.1 (11/10/2020)

#### Highlights

- Support mixed precision training of voxel-based methods
- Support docker with pytorch 1.6.0
- Update baseline configs and results ([CenterPoint](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/centerpoint) on nuScenes and [PointPillars](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars) on Waymo with full dataset)
- Switch model zoo to download.openmmlab.com

#### Bug Fixes

- Fix a bug of visualization in multi-batch case (#120)
- Fix bugs in dcn unit test (#130)
- Fix dcn bias bug in centerpoint (#137)
- Fix dataset mapping in the evaluation of nuScenes mini dataset (#140)
- Fix origin initialization in `CameraInstance3DBoxes` (#148, #150)
- Correct documentation link in the getting_started.md (#159)
- Fix model save path bug in gather_models.py (#153)
- Fix image padding shape bug in `PointFusion` (#162)

#### New Features

- Support dataset pipeline `VoxelBasedPointSampler` to sample multi-sweep points based on voxelization. (#125)
- Support mixed precision training of voxel-based methods (#132)
- Support docker with pytorch 1.6.0 (#160)

#### Improvements

- Reduce requirements for the case exclusive of Waymo (#121)
- Switch model zoo to download.openmmlab.com (#126)
- Update docs related to Waymo (#128)
- Add version assertion in the [init file](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/__init__.py) (#129)
- Add evaluation interval setting for CenterPoint (#131)
- Add unit test for CenterPoint (#133)
- Update [PointPillars](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars) baselines on Waymo with full dataset (#142)
- Update [CenterPoint](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/centerpoint) results with models and logs (#154)

Wenwei Zhang's avatar
Wenwei Zhang committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
### v0.6.0 (20/9/2020)

#### Highlights

- Support new methods [H3DNet](https://arxiv.org/abs/2006.05682), [3DSSD](https://arxiv.org/abs/2002.10187), [CenterPoint](https://arxiv.org/abs/2006.11275).
- Support new dataset [Waymo](https://waymo.com/open/) (with PointPillars baselines) and [nuImages](https://www.nuscenes.org/nuimages) (with Mask R-CNN and Cascade Mask R-CNN baselines).
- Support Batch Inference
- Support Pytorch 1.6
- Start to publish `mmdet3d` package to PyPI since v0.5.0. You can use mmdet3d through `pip install mmdet3d`.

#### Backwards Incompatible Changes

- Support Batch Inference (#95, #103, #116): MMDetection3D v0.6.0 migrates to support batch inference based on MMDetection >= v2.4.0. This change influences all the test APIs in MMDetection3D and downstream codebases.
- Start to use collect environment function from MMCV (#113): MMDetection3D v0.6.0 migrates to use `collect_env` function in MMCV.
`get_compiler_version` and `get_compiling_cuda_version` compiled in `mmdet3d.ops.utils` are removed. Please import these two functions from `mmcv.ops`.

#### Bug Fixes

- Rename CosineAnealing to CosineAnnealing (#57)
- Fix device inconsistant bug in 3D IoU computation (#69)
- Fix a minor bug in json2csv of lyft dataset (#78)
- Add missed test data for pointnet modules (#85)
- Fix `use_valid_flag` bug in `CustomDataset` (#106)

#### New Features

- Support [nuImages](https://www.nuscenes.org/nuimages) dataset by converting them into coco format and release Mask R-CNN and Cascade Mask R-CNN baseline models (#91, #94)
- Support to publish to PyPI in github-action (#17, #19, #25, #39, #40)
- Support CBGSDataset and make it generally applicable to all the supported datasets (#75, #94)
- Support [H3DNet](https://arxiv.org/abs/2006.05682) and release models on ScanNet dataset (#53, #58, #105)
- Support Fusion Point Sampling used in [3DSSD](https://arxiv.org/abs/2002.10187) (#66)
- Add `BackgroundPointsFilter` to filter background points in data pipeline (#84)
- Support pointnet2 with multi-scale grouping in backbone and refactor pointnets (#82)
- Support dilated ball query used in [3DSSD](https://arxiv.org/abs/2002.10187) (#96)
- Support [3DSSD](https://arxiv.org/abs/2002.10187) and release models on KITTI dataset (#83, #100, #104)
- Support [CenterPoint](https://arxiv.org/abs/2006.11275) and release models on nuScenes dataset (#49, #92)
- Support [Waymo](https://waymo.com/open/) dataset and release PointPillars baseline models (#118)
- Allow `LoadPointsFromMultiSweeps` to pad empty sweeps and select multiple sweeps randomly (#67)

#### Improvements

- Fix all warnings and bugs in Pytorch 1.6.0 (#70, #72)
- Update issue templates (#43)
- Update unit tests (#20, #24, #30)
- Update documentation for using `ply` format point cloud data (#41)
- Use points loader to load point cloud data in ground truth (GT) samplers (#87)
- Unify version file of OpenMMLab projects by using `version.py` (#112)
- Remove unnecessary data preprocessing commands of SUN RGB-D dataset (#110)

210
### v0.5.0 (9/7/2020)
Wenwei Zhang's avatar
Wenwei Zhang committed
211

zhangwenwei's avatar
zhangwenwei committed
212
MMDetection3D is released.