anchor3d_head.py 21.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
3
import numpy as np
import torch
4
from mmcv.runner import BaseModule, force_fp32
zhangwenwei's avatar
zhangwenwei committed
5
from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
6

zhangwenwei's avatar
zhangwenwei committed
7
from mmdet3d.core import (PseudoSampler, box3d_multiclass_nms, limit_period,
zhangwenwei's avatar
zhangwenwei committed
8
                          xywhr2xyxyr)
9
10
from mmdet.core import (build_assigner, build_bbox_coder,
                        build_prior_generator, build_sampler, multi_apply)
zhangwenwei's avatar
zhangwenwei committed
11
from mmdet.models import HEADS
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
from ..builder import build_loss
from .train_mixins import AnchorTrainMixin


16
@HEADS.register_module()
17
class Anchor3DHead(BaseModule, AnchorTrainMixin):
zhangwenwei's avatar
zhangwenwei committed
18
    """Anchor head for SECOND/PointPillars/MVXNet/PartA2.
19

zhangwenwei's avatar
zhangwenwei committed
20
    Args:
zhangwenwei's avatar
zhangwenwei committed
21
        num_classes (int): Number of classes.
zhangwenwei's avatar
zhangwenwei committed
22
        in_channels (int): Number of channels in the input feature map.
wuyuefeng's avatar
wuyuefeng committed
23
24
        train_cfg (dict): Train configs.
        test_cfg (dict): Test configs.
zhangwenwei's avatar
zhangwenwei committed
25
        feat_channels (int): Number of channels of the feature map.
26
27
28
29
30
31
32
        use_direction_classifier (bool): Whether to add a direction classifier.
        anchor_generator(dict): Config dict of anchor generator.
        assigner_per_size (bool): Whether to do assignment for each separate
            anchor size.
        assign_per_class (bool): Whether to do assignment for each class.
        diff_rad_by_sin (bool): Whether to change the difference into sin
            difference for box regression loss.
wuyuefeng's avatar
wuyuefeng committed
33
        dir_offset (float | int): The offset of BEV rotation angles.
34
            (TODO: may be moved into box coder)
wuyuefeng's avatar
wuyuefeng committed
35
36
37
        dir_limit_offset (float | int): The limited range of BEV
            rotation angles. (TODO: may be moved into box coder)
        bbox_coder (dict): Config dict of box coders.
zhangwenwei's avatar
zhangwenwei committed
38
39
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
40
        loss_dir (dict): Config of direction classifier loss.
zhangwenwei's avatar
zhangwenwei committed
41
    """
zhangwenwei's avatar
zhangwenwei committed
42
43

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
44
                 num_classes,
zhangwenwei's avatar
zhangwenwei committed
45
46
47
48
49
                 in_channels,
                 train_cfg,
                 test_cfg,
                 feat_channels=256,
                 use_direction_classifier=True,
50
51
52
53
                 anchor_generator=dict(
                     type='Anchor3DRangeGenerator',
                     range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                     strides=[2],
54
                     sizes=[[3.9, 1.6, 1.56]],
55
56
57
                     rotations=[0, 1.57],
                     custom_values=[],
                     reshape_out=False),
zhangwenwei's avatar
zhangwenwei committed
58
59
60
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
61
62
                 dir_offset=-np.pi / 2,
                 dir_limit_offset=0,
63
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
64
65
66
67
68
69
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
70
71
72
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
zhangwenwei's avatar
zhangwenwei committed
73
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
74
        self.num_classes = num_classes
zhangwenwei's avatar
zhangwenwei committed
75
76
77
78
79
80
81
82
83
        self.feat_channels = feat_channels
        self.diff_rad_by_sin = diff_rad_by_sin
        self.use_direction_classifier = use_direction_classifier
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.assigner_per_size = assigner_per_size
        self.assign_per_class = assign_per_class
        self.dir_offset = dir_offset
        self.dir_limit_offset = dir_limit_offset
84
85
86
87
        import warnings
        warnings.warn(
            'dir_offset and dir_limit_offset will be depressed and be '
            'incorporated into box coder in the future')
88
        self.fp16_enabled = False
zhangwenwei's avatar
zhangwenwei committed
89
90

        # build anchor generator
91
        self.anchor_generator = build_prior_generator(anchor_generator)
zhangwenwei's avatar
zhangwenwei committed
92
        # In 3D detection, the anchor stride is connected with anchor size
93
        self.num_anchors = self.anchor_generator.num_base_anchors
zhangwenwei's avatar
zhangwenwei committed
94
95
96
        # build box coder
        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.box_code_size = self.bbox_coder.code_size
zhangwenwei's avatar
zhangwenwei committed
97

zhangwenwei's avatar
zhangwenwei committed
98
        # build loss function
zhangwenwei's avatar
zhangwenwei committed
99
        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
zhangwenwei's avatar
zhangwenwei committed
100
        self.sampling = loss_cls['type'] not in ['FocalLoss', 'GHMC']
zhangwenwei's avatar
zhangwenwei committed
101
102
103
104
105
106
107
        if not self.use_sigmoid_cls:
            self.num_classes += 1
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_dir = build_loss(loss_dir)
        self.fp16_enabled = False

zhangwenwei's avatar
zhangwenwei committed
108
109
110
        self._init_layers()
        self._init_assigner_sampler()

111
112
113
114
115
116
117
118
        if init_cfg is None:
            self.init_cfg = dict(
                type='Normal',
                layer='Conv2d',
                std=0.01,
                override=dict(
                    type='Normal', name='conv_cls', std=0.01, bias_prob=0.01))

zhangwenwei's avatar
zhangwenwei committed
119
    def _init_assigner_sampler(self):
120
        """Initialize the target assigner and sampler of the head."""
zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        if self.train_cfg is None:
            return

        if self.sampling:
            self.bbox_sampler = build_sampler(self.train_cfg.sampler)
        else:
            self.bbox_sampler = PseudoSampler()
        if isinstance(self.train_cfg.assigner, dict):
            self.bbox_assigner = build_assigner(self.train_cfg.assigner)
        elif isinstance(self.train_cfg.assigner, list):
            self.bbox_assigner = [
                build_assigner(res) for res in self.train_cfg.assigner
            ]

zhangwenwei's avatar
zhangwenwei committed
135
    def _init_layers(self):
136
        """Initialize neural network layers of the head."""
zhangwenwei's avatar
zhangwenwei committed
137
138
139
140
141
142
143
144
145
        self.cls_out_channels = self.num_anchors * self.num_classes
        self.conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        self.conv_reg = nn.Conv2d(self.feat_channels,
                                  self.num_anchors * self.box_code_size, 1)
        if self.use_direction_classifier:
            self.conv_dir_cls = nn.Conv2d(self.feat_channels,
                                          self.num_anchors * 2, 1)

    def forward_single(self, x):
wuyuefeng's avatar
wuyuefeng committed
146
147
148
        """Forward function on a single-scale feature map.

        Args:
liyinhao's avatar
liyinhao committed
149
            x (torch.Tensor): Input features.
wuyuefeng's avatar
wuyuefeng committed
150
151

        Returns:
152
            tuple[torch.Tensor]: Contain score of each class, bbox
zhangwenwei's avatar
zhangwenwei committed
153
                regression and direction classification predictions.
wuyuefeng's avatar
wuyuefeng committed
154
        """
zhangwenwei's avatar
zhangwenwei committed
155
156
157
158
159
160
161
162
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        dir_cls_preds = None
        if self.use_direction_classifier:
            dir_cls_preds = self.conv_dir_cls(x)
        return cls_score, bbox_pred, dir_cls_preds

    def forward(self, feats):
wuyuefeng's avatar
wuyuefeng committed
163
164
165
        """Forward pass.

        Args:
liyinhao's avatar
liyinhao committed
166
            feats (list[torch.Tensor]): Multi-level features, e.g.,
wuyuefeng's avatar
wuyuefeng committed
167
168
169
                features produced by FPN.

        Returns:
170
            tuple[list[torch.Tensor]]: Multi-level class score, bbox
wuyuefeng's avatar
wuyuefeng committed
171
172
                and direction predictions.
        """
zhangwenwei's avatar
zhangwenwei committed
173
174
        return multi_apply(self.forward_single, feats)

175
    def get_anchors(self, featmap_sizes, input_metas, device='cuda'):
zhangwenwei's avatar
zhangwenwei committed
176
        """Get anchors according to feature map sizes.
zhangwenwei's avatar
zhangwenwei committed
177

zhangwenwei's avatar
zhangwenwei committed
178
179
180
        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            input_metas (list[dict]): contain pcd and img's meta info.
wangtai's avatar
wangtai committed
181
            device (str): device of current module.
zhangwenwei's avatar
zhangwenwei committed
182

zhangwenwei's avatar
zhangwenwei committed
183
        Returns:
184
            list[list[torch.Tensor]]: Anchors of each image, valid flags
wangtai's avatar
wangtai committed
185
                of each image.
zhangwenwei's avatar
zhangwenwei committed
186
187
188
189
        """
        num_imgs = len(input_metas)
        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
190
191
        multi_level_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
192
193
194
195
196
197
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]
        return anchor_list

    def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels,
                    label_weights, bbox_targets, bbox_weights, dir_targets,
                    dir_weights, num_total_samples):
wuyuefeng's avatar
wuyuefeng committed
198
199
200
        """Calculate loss of Single-level results.

        Args:
liyinhao's avatar
liyinhao committed
201
202
203
            cls_score (torch.Tensor): Class score in single-level.
            bbox_pred (torch.Tensor): Bbox prediction in single-level.
            dir_cls_preds (torch.Tensor): Predictions of direction class
wuyuefeng's avatar
wuyuefeng committed
204
                in single-level.
liyinhao's avatar
liyinhao committed
205
206
207
208
209
210
            labels (torch.Tensor): Labels of class.
            label_weights (torch.Tensor): Weights of class loss.
            bbox_targets (torch.Tensor): Targets of bbox predictions.
            bbox_weights (torch.Tensor): Weights of bbox loss.
            dir_targets (torch.Tensor): Targets of direction predictions.
            dir_weights (torch.Tensor): Weights of direction loss.
wuyuefeng's avatar
wuyuefeng committed
211
212
213
            num_total_samples (int): The number of valid samples.

        Returns:
214
            tuple[torch.Tensor]: Losses of class, bbox
liyinhao's avatar
liyinhao committed
215
                and direction, respectively.
wuyuefeng's avatar
wuyuefeng committed
216
        """
zhangwenwei's avatar
zhangwenwei committed
217
218
219
220
221
222
        # classification loss
        if num_total_samples is None:
            num_total_samples = int(cls_score.shape[0])
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
223
        assert labels.max().item() <= self.num_classes
zhangwenwei's avatar
zhangwenwei committed
224
225
226
227
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=num_total_samples)

        # regression loss
228
229
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1, self.box_code_size)
zhangwenwei's avatar
zhangwenwei committed
230
231
232
        bbox_targets = bbox_targets.reshape(-1, self.box_code_size)
        bbox_weights = bbox_weights.reshape(-1, self.box_code_size)

233
234
        bg_class_ind = self.num_classes
        pos_inds = ((labels >= 0)
Wenhao Wu's avatar
Wenhao Wu committed
235
236
                    & (labels < bg_class_ind)).nonzero(
                        as_tuple=False).reshape(-1)
237
238
239
240
241
242
243
        num_pos = len(pos_inds)

        pos_bbox_pred = bbox_pred[pos_inds]
        pos_bbox_targets = bbox_targets[pos_inds]
        pos_bbox_weights = bbox_weights[pos_inds]

        # dir loss
zhangwenwei's avatar
zhangwenwei committed
244
245
246
247
        if self.use_direction_classifier:
            dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).reshape(-1, 2)
            dir_targets = dir_targets.reshape(-1)
            dir_weights = dir_weights.reshape(-1)
248
249
250
251
252
253
254
            pos_dir_cls_preds = dir_cls_preds[pos_inds]
            pos_dir_targets = dir_targets[pos_inds]
            pos_dir_weights = dir_weights[pos_inds]

        if num_pos > 0:
            code_weight = self.train_cfg.get('code_weight', None)
            if code_weight:
255
                pos_bbox_weights = pos_bbox_weights * bbox_weights.new_tensor(
256
257
258
259
260
261
262
263
                    code_weight)
            if self.diff_rad_by_sin:
                pos_bbox_pred, pos_bbox_targets = self.add_sin_difference(
                    pos_bbox_pred, pos_bbox_targets)
            loss_bbox = self.loss_bbox(
                pos_bbox_pred,
                pos_bbox_targets,
                pos_bbox_weights,
zhangwenwei's avatar
zhangwenwei committed
264
265
                avg_factor=num_total_samples)

266
267
268
269
270
271
272
273
274
275
276
277
278
            # direction classification loss
            loss_dir = None
            if self.use_direction_classifier:
                loss_dir = self.loss_dir(
                    pos_dir_cls_preds,
                    pos_dir_targets,
                    pos_dir_weights,
                    avg_factor=num_total_samples)
        else:
            loss_bbox = pos_bbox_pred.sum()
            if self.use_direction_classifier:
                loss_dir = pos_dir_cls_preds.sum()

zhangwenwei's avatar
zhangwenwei committed
279
280
281
282
        return loss_cls, loss_bbox, loss_dir

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
zhangwenwei's avatar
zhangwenwei committed
283
        """Convert the rotation difference to difference in sine function.
zhangwenwei's avatar
zhangwenwei committed
284
285

        Args:
zhangwenwei's avatar
zhangwenwei committed
286
287
288
289
            boxes1 (torch.Tensor): Original Boxes in shape (NxC), where C>=7
                and the 7th dimension is rotation dimension.
            boxes2 (torch.Tensor): Target boxes in shape (NxC), where C>=7 and
                the 7th dimension is rotation dimension.
zhangwenwei's avatar
zhangwenwei committed
290
291

        Returns:
292
            tuple[torch.Tensor]: ``boxes1`` and ``boxes2`` whose 7th
zhangwenwei's avatar
zhangwenwei committed
293
                dimensions are changed.
zhangwenwei's avatar
zhangwenwei committed
294
295
296
297
298
299
300
301
302
        """
        rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos(
            boxes2[..., 6:7])
        rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[...,
                                                                         6:7])
        boxes1 = torch.cat(
            [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1)
        boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]],
                           dim=-1)
zhangwenwei's avatar
zhangwenwei committed
303
304
        return boxes1, boxes2

305
    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds'))
zhangwenwei's avatar
zhangwenwei committed
306
307
308
309
310
311
312
313
    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
wuyuefeng's avatar
wuyuefeng committed
314
315
316
        """Calculate losses.

        Args:
liyinhao's avatar
liyinhao committed
317
318
319
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
wuyuefeng's avatar
wuyuefeng committed
320
                class predictions.
zhangwenwei's avatar
zhangwenwei committed
321
            gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Gt bboxes
wuyuefeng's avatar
wuyuefeng committed
322
                of each sample.
liyinhao's avatar
liyinhao committed
323
            gt_labels (list[torch.Tensor]): Gt labels of each sample.
wuyuefeng's avatar
wuyuefeng committed
324
            input_metas (list[dict]): Contain pcd and img's meta info.
325
326
            gt_bboxes_ignore (list[torch.Tensor]): Specify
                which bounding boxes to ignore.
wuyuefeng's avatar
wuyuefeng committed
327
328

        Returns:
329
            dict[str, list[torch.Tensor]]: Classification, bbox, and
zhangwenwei's avatar
zhangwenwei committed
330
                direction losses of each level.
331

332
333
                - loss_cls (list[torch.Tensor]): Classification losses.
                - loss_bbox (list[torch.Tensor]): Box regression losses.
334
                - loss_dir (list[torch.Tensor]): Direction classification
335
                    losses.
wuyuefeng's avatar
wuyuefeng committed
336
        """
zhangwenwei's avatar
zhangwenwei committed
337
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
338
339
340
341
        assert len(featmap_sizes) == self.anchor_generator.num_levels
        device = cls_scores[0].device
        anchor_list = self.get_anchors(
            featmap_sizes, input_metas, device=device)
zhangwenwei's avatar
zhangwenwei committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.anchor_target_3d(
            anchor_list,
            gt_bboxes,
            input_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            num_classes=self.num_classes,
            label_channels=label_channels,
            sampling=self.sampling)

        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         dir_targets_list, dir_weights_list, num_total_pos,
         num_total_neg) = cls_reg_targets
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)

        # num_total_samples = None
        losses_cls, losses_bbox, losses_dir = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            dir_cls_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            dir_targets_list,
            dir_weights_list,
            num_total_samples=num_total_samples)
        return dict(
zhangwenwei's avatar
zhangwenwei committed
375
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dir=losses_dir)
zhangwenwei's avatar
zhangwenwei committed
376
377
378
379
380
381

    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   input_metas,
zhangwenwei's avatar
zhangwenwei committed
382
                   cfg=None,
zhangwenwei's avatar
zhangwenwei committed
383
                   rescale=False):
wuyuefeng's avatar
wuyuefeng committed
384
385
386
        """Get bboxes of anchor head.

        Args:
liyinhao's avatar
liyinhao committed
387
388
389
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
wuyuefeng's avatar
wuyuefeng committed
390
391
                class predictions.
            input_metas (list[dict]): Contain pcd and img's meta info.
392
            cfg (:obj:`ConfigDict`): Training or testing config.
wangtai's avatar
wangtai committed
393
            rescale (list[torch.Tensor]): Whether th rescale bbox.
wuyuefeng's avatar
wuyuefeng committed
394
395

        Returns:
wangtai's avatar
wangtai committed
396
            list[tuple]: Prediction resultes of batches.
wuyuefeng's avatar
wuyuefeng committed
397
        """
zhangwenwei's avatar
zhangwenwei committed
398
399
400
        assert len(cls_scores) == len(bbox_preds)
        assert len(cls_scores) == len(dir_cls_preds)
        num_levels = len(cls_scores)
401
402
        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        device = cls_scores[0].device
403
        mlvl_anchors = self.anchor_generator.grid_anchors(
404
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
405
        mlvl_anchors = [
406
            anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors
zhangwenwei's avatar
zhangwenwei committed
407
        ]
408

zhangwenwei's avatar
zhangwenwei committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        result_list = []
        for img_id in range(len(input_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            dir_cls_pred_list = [
                dir_cls_preds[i][img_id].detach() for i in range(num_levels)
            ]

            input_meta = input_metas[img_id]
            proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
                                               dir_cls_pred_list, mlvl_anchors,
zhangwenwei's avatar
zhangwenwei committed
424
                                               input_meta, cfg, rescale)
zhangwenwei's avatar
zhangwenwei committed
425
426
427
428
429
430
431
432
433
            result_list.append(proposals)
        return result_list

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
zhangwenwei's avatar
zhangwenwei committed
434
                          cfg=None,
zhangwenwei's avatar
zhangwenwei committed
435
                          rescale=False):
wuyuefeng's avatar
wuyuefeng committed
436
437
438
        """Get bboxes of single branch.

        Args:
liyinhao's avatar
liyinhao committed
439
440
441
442
443
            cls_scores (torch.Tensor): Class score in single batch.
            bbox_preds (torch.Tensor): Bbox prediction in single batch.
            dir_cls_preds (torch.Tensor): Predictions of direction class
                in single batch.
            mlvl_anchors (List[torch.Tensor]): Multi-level anchors
wuyuefeng's avatar
wuyuefeng committed
444
445
                in single batch.
            input_meta (list[dict]): Contain pcd and img's meta info.
446
            cfg (:obj:`ConfigDict`): Training or testing config.
liyinhao's avatar
liyinhao committed
447
            rescale (list[torch.Tensor]): whether th rescale bbox.
wuyuefeng's avatar
wuyuefeng committed
448
449
450

        Returns:
            tuple: Contain predictions of single batch.
451

zhangwenwei's avatar
zhangwenwei committed
452
                - bboxes (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes.
liyinhao's avatar
liyinhao committed
453
454
                - scores (torch.Tensor): Class score of each bbox.
                - labels (torch.Tensor): Label of each bbox.
wuyuefeng's avatar
wuyuefeng committed
455
        """
zhangwenwei's avatar
zhangwenwei committed
456
        cfg = self.test_cfg if cfg is None else cfg
zhangwenwei's avatar
zhangwenwei committed
457
458
459
460
461
462
463
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
zhangwenwei's avatar
zhangwenwei committed
464
465
466
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]
zhangwenwei's avatar
zhangwenwei committed
467
468
469
470
471
472
473
474
475
476

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

zhangwenwei's avatar
zhangwenwei committed
477
478
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
zhangwenwei's avatar
zhangwenwei committed
479
480
481
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
zhangwenwei's avatar
zhangwenwei committed
482
483
484
485
486
487
488
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_score = dir_cls_score[topk_inds]

489
            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
zhangwenwei's avatar
zhangwenwei committed
490
491
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
zhangwenwei's avatar
zhangwenwei committed
492
            mlvl_dir_scores.append(dir_cls_score)
zhangwenwei's avatar
zhangwenwei committed
493
494

        mlvl_bboxes = torch.cat(mlvl_bboxes)
zhangwenwei's avatar
zhangwenwei committed
495
496
        mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d'](
            mlvl_bboxes, box_dim=self.box_code_size).bev)
zhangwenwei's avatar
zhangwenwei committed
497
498
499
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

zhangwenwei's avatar
zhangwenwei committed
500
501
502
503
504
505
506
507
508
509
510
        if self.use_sigmoid_cls:
            # Add a dummy background class to the front when using sigmoid
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        score_thr = cfg.get('score_thr', 0)
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_scores, score_thr, cfg.max_num,
                                       cfg, mlvl_dir_scores)
        bboxes, scores, labels, dir_scores = results
        if bboxes.shape[0] > 0:
zhangwenwei's avatar
zhangwenwei committed
511
512
            dir_rot = limit_period(bboxes[..., 6] - self.dir_offset,
                                   self.dir_limit_offset, np.pi)
zhangwenwei's avatar
zhangwenwei committed
513
            bboxes[..., 6] = (
zhangwenwei's avatar
zhangwenwei committed
514
                dir_rot + self.dir_offset +
zhangwenwei's avatar
zhangwenwei committed
515
                np.pi * dir_scores.to(bboxes.dtype))
516
        bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size)
zhangwenwei's avatar
zhangwenwei committed
517
        return bboxes, scores, labels