"BUSYBOX/config" did not exist on "2936666a78aa6a9db8e1f489d6de6900c151cae3"
anchor3d_head.py 20.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
import numpy as np
import torch
3
from mmcv.cnn import bias_init_with_prob, normal_init
4
from mmcv.runner import force_fp32
zhangwenwei's avatar
zhangwenwei committed
5
from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
6

zhangwenwei's avatar
zhangwenwei committed
7
from mmdet3d.core import (PseudoSampler, box3d_multiclass_nms, limit_period,
zhangwenwei's avatar
zhangwenwei committed
8
                          xywhr2xyxyr)
zhangwenwei's avatar
zhangwenwei committed
9
10
from mmdet.core import (build_anchor_generator, build_assigner,
                        build_bbox_coder, build_sampler, multi_apply)
zhangwenwei's avatar
zhangwenwei committed
11
from mmdet.models import HEADS
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
from ..builder import build_loss
from .train_mixins import AnchorTrainMixin


16
@HEADS.register_module()
zhangwenwei's avatar
zhangwenwei committed
17
18
class Anchor3DHead(nn.Module, AnchorTrainMixin):
    """Anchor head for SECOND/PointPillars/MVXNet/PartA2.
19

zhangwenwei's avatar
zhangwenwei committed
20
    Args:
zhangwenwei's avatar
zhangwenwei committed
21
        num_classes (int): Number of classes.
zhangwenwei's avatar
zhangwenwei committed
22
        in_channels (int): Number of channels in the input feature map.
wuyuefeng's avatar
wuyuefeng committed
23
24
        train_cfg (dict): Train configs.
        test_cfg (dict): Test configs.
zhangwenwei's avatar
zhangwenwei committed
25
        feat_channels (int): Number of channels of the feature map.
26
27
28
29
30
31
32
        use_direction_classifier (bool): Whether to add a direction classifier.
        anchor_generator(dict): Config dict of anchor generator.
        assigner_per_size (bool): Whether to do assignment for each separate
            anchor size.
        assign_per_class (bool): Whether to do assignment for each class.
        diff_rad_by_sin (bool): Whether to change the difference into sin
            difference for box regression loss.
wuyuefeng's avatar
wuyuefeng committed
33
        dir_offset (float | int): The offset of BEV rotation angles.
34
            (TODO: may be moved into box coder)
wuyuefeng's avatar
wuyuefeng committed
35
36
37
        dir_limit_offset (float | int): The limited range of BEV
            rotation angles. (TODO: may be moved into box coder)
        bbox_coder (dict): Config dict of box coders.
zhangwenwei's avatar
zhangwenwei committed
38
39
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
40
        loss_dir (dict): Config of direction classifier loss.
zhangwenwei's avatar
zhangwenwei committed
41
    """
zhangwenwei's avatar
zhangwenwei committed
42
43

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
44
                 num_classes,
zhangwenwei's avatar
zhangwenwei committed
45
46
47
48
49
                 in_channels,
                 train_cfg,
                 test_cfg,
                 feat_channels=256,
                 use_direction_classifier=True,
50
51
52
53
54
55
56
57
                 anchor_generator=dict(
                     type='Anchor3DRangeGenerator',
                     range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                     strides=[2],
                     sizes=[[1.6, 3.9, 1.56]],
                     rotations=[0, 1.57],
                     custom_values=[],
                     reshape_out=False),
zhangwenwei's avatar
zhangwenwei committed
58
59
60
61
62
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
                 dir_offset=0,
                 dir_limit_offset=1,
63
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
64
65
66
67
68
69
70
71
72
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
        super().__init__()
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
73
        self.num_classes = num_classes
zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
78
79
80
81
82
        self.feat_channels = feat_channels
        self.diff_rad_by_sin = diff_rad_by_sin
        self.use_direction_classifier = use_direction_classifier
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.assigner_per_size = assigner_per_size
        self.assign_per_class = assign_per_class
        self.dir_offset = dir_offset
        self.dir_limit_offset = dir_limit_offset
83
        self.fp16_enabled = False
zhangwenwei's avatar
zhangwenwei committed
84
85

        # build anchor generator
86
        self.anchor_generator = build_anchor_generator(anchor_generator)
zhangwenwei's avatar
zhangwenwei committed
87
        # In 3D detection, the anchor stride is connected with anchor size
88
        self.num_anchors = self.anchor_generator.num_base_anchors
zhangwenwei's avatar
zhangwenwei committed
89
90
91
        # build box coder
        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.box_code_size = self.bbox_coder.code_size
zhangwenwei's avatar
zhangwenwei committed
92

zhangwenwei's avatar
zhangwenwei committed
93
        # build loss function
zhangwenwei's avatar
zhangwenwei committed
94
        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
zhangwenwei's avatar
zhangwenwei committed
95
        self.sampling = loss_cls['type'] not in ['FocalLoss', 'GHMC']
zhangwenwei's avatar
zhangwenwei committed
96
97
98
99
100
101
102
        if not self.use_sigmoid_cls:
            self.num_classes += 1
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_dir = build_loss(loss_dir)
        self.fp16_enabled = False

zhangwenwei's avatar
zhangwenwei committed
103
104
105
106
        self._init_layers()
        self._init_assigner_sampler()

    def _init_assigner_sampler(self):
107
        """Initialize the target assigner and sampler of the head."""
zhangwenwei's avatar
zhangwenwei committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        if self.train_cfg is None:
            return

        if self.sampling:
            self.bbox_sampler = build_sampler(self.train_cfg.sampler)
        else:
            self.bbox_sampler = PseudoSampler()
        if isinstance(self.train_cfg.assigner, dict):
            self.bbox_assigner = build_assigner(self.train_cfg.assigner)
        elif isinstance(self.train_cfg.assigner, list):
            self.bbox_assigner = [
                build_assigner(res) for res in self.train_cfg.assigner
            ]

zhangwenwei's avatar
zhangwenwei committed
122
    def _init_layers(self):
123
        """Initialize neural network layers of the head."""
zhangwenwei's avatar
zhangwenwei committed
124
125
126
127
128
129
130
131
132
        self.cls_out_channels = self.num_anchors * self.num_classes
        self.conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        self.conv_reg = nn.Conv2d(self.feat_channels,
                                  self.num_anchors * self.box_code_size, 1)
        if self.use_direction_classifier:
            self.conv_dir_cls = nn.Conv2d(self.feat_channels,
                                          self.num_anchors * 2, 1)

    def init_weights(self):
133
        """Initialize the weights of head."""
zhangwenwei's avatar
zhangwenwei committed
134
135
136
137
138
        bias_cls = bias_init_with_prob(0.01)
        normal_init(self.conv_cls, std=0.01, bias=bias_cls)
        normal_init(self.conv_reg, std=0.01)

    def forward_single(self, x):
wuyuefeng's avatar
wuyuefeng committed
139
140
141
        """Forward function on a single-scale feature map.

        Args:
liyinhao's avatar
liyinhao committed
142
            x (torch.Tensor): Input features.
wuyuefeng's avatar
wuyuefeng committed
143
144

        Returns:
zhangwenwei's avatar
zhangwenwei committed
145
146
            tuple[torch.Tensor]: Contain score of each class, bbox \
                regression and direction classification predictions.
wuyuefeng's avatar
wuyuefeng committed
147
        """
zhangwenwei's avatar
zhangwenwei committed
148
149
150
151
152
153
154
155
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        dir_cls_preds = None
        if self.use_direction_classifier:
            dir_cls_preds = self.conv_dir_cls(x)
        return cls_score, bbox_pred, dir_cls_preds

    def forward(self, feats):
wuyuefeng's avatar
wuyuefeng committed
156
157
158
        """Forward pass.

        Args:
liyinhao's avatar
liyinhao committed
159
            feats (list[torch.Tensor]): Multi-level features, e.g.,
wuyuefeng's avatar
wuyuefeng committed
160
161
162
                features produced by FPN.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
163
            tuple[list[torch.Tensor]]: Multi-level class score, bbox \
wuyuefeng's avatar
wuyuefeng committed
164
165
                and direction predictions.
        """
zhangwenwei's avatar
zhangwenwei committed
166
167
        return multi_apply(self.forward_single, feats)

168
    def get_anchors(self, featmap_sizes, input_metas, device='cuda'):
zhangwenwei's avatar
zhangwenwei committed
169
        """Get anchors according to feature map sizes.
zhangwenwei's avatar
zhangwenwei committed
170

zhangwenwei's avatar
zhangwenwei committed
171
172
173
        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            input_metas (list[dict]): contain pcd and img's meta info.
wangtai's avatar
wangtai committed
174
            device (str): device of current module.
zhangwenwei's avatar
zhangwenwei committed
175

zhangwenwei's avatar
zhangwenwei committed
176
        Returns:
wangtai's avatar
wangtai committed
177
178
            list[list[torch.Tensor]]: Anchors of each image, valid flags \
                of each image.
zhangwenwei's avatar
zhangwenwei committed
179
180
181
182
        """
        num_imgs = len(input_metas)
        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
183
184
        multi_level_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
185
186
187
188
189
190
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]
        return anchor_list

    def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels,
                    label_weights, bbox_targets, bbox_weights, dir_targets,
                    dir_weights, num_total_samples):
wuyuefeng's avatar
wuyuefeng committed
191
192
193
        """Calculate loss of Single-level results.

        Args:
liyinhao's avatar
liyinhao committed
194
195
196
            cls_score (torch.Tensor): Class score in single-level.
            bbox_pred (torch.Tensor): Bbox prediction in single-level.
            dir_cls_preds (torch.Tensor): Predictions of direction class
wuyuefeng's avatar
wuyuefeng committed
197
                in single-level.
liyinhao's avatar
liyinhao committed
198
199
200
201
202
203
            labels (torch.Tensor): Labels of class.
            label_weights (torch.Tensor): Weights of class loss.
            bbox_targets (torch.Tensor): Targets of bbox predictions.
            bbox_weights (torch.Tensor): Weights of bbox loss.
            dir_targets (torch.Tensor): Targets of direction predictions.
            dir_weights (torch.Tensor): Weights of direction loss.
wuyuefeng's avatar
wuyuefeng committed
204
205
206
            num_total_samples (int): The number of valid samples.

        Returns:
wangtai's avatar
wangtai committed
207
            tuple[torch.Tensor]: Losses of class, bbox \
liyinhao's avatar
liyinhao committed
208
                and direction, respectively.
wuyuefeng's avatar
wuyuefeng committed
209
        """
zhangwenwei's avatar
zhangwenwei committed
210
211
212
213
214
215
        # classification loss
        if num_total_samples is None:
            num_total_samples = int(cls_score.shape[0])
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
216
        assert labels.max().item() <= self.num_classes
zhangwenwei's avatar
zhangwenwei committed
217
218
219
220
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=num_total_samples)

        # regression loss
221
222
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1, self.box_code_size)
zhangwenwei's avatar
zhangwenwei committed
223
224
225
        bbox_targets = bbox_targets.reshape(-1, self.box_code_size)
        bbox_weights = bbox_weights.reshape(-1, self.box_code_size)

226
227
228
229
230
231
232
233
234
235
        bg_class_ind = self.num_classes
        pos_inds = ((labels >= 0)
                    & (labels < bg_class_ind)).nonzero().reshape(-1)
        num_pos = len(pos_inds)

        pos_bbox_pred = bbox_pred[pos_inds]
        pos_bbox_targets = bbox_targets[pos_inds]
        pos_bbox_weights = bbox_weights[pos_inds]

        # dir loss
zhangwenwei's avatar
zhangwenwei committed
236
237
238
239
        if self.use_direction_classifier:
            dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).reshape(-1, 2)
            dir_targets = dir_targets.reshape(-1)
            dir_weights = dir_weights.reshape(-1)
240
241
242
243
244
245
246
            pos_dir_cls_preds = dir_cls_preds[pos_inds]
            pos_dir_targets = dir_targets[pos_inds]
            pos_dir_weights = dir_weights[pos_inds]

        if num_pos > 0:
            code_weight = self.train_cfg.get('code_weight', None)
            if code_weight:
247
                pos_bbox_weights = pos_bbox_weights * bbox_weights.new_tensor(
248
249
250
251
252
253
254
255
                    code_weight)
            if self.diff_rad_by_sin:
                pos_bbox_pred, pos_bbox_targets = self.add_sin_difference(
                    pos_bbox_pred, pos_bbox_targets)
            loss_bbox = self.loss_bbox(
                pos_bbox_pred,
                pos_bbox_targets,
                pos_bbox_weights,
zhangwenwei's avatar
zhangwenwei committed
256
257
                avg_factor=num_total_samples)

258
259
260
261
262
263
264
265
266
267
268
269
270
            # direction classification loss
            loss_dir = None
            if self.use_direction_classifier:
                loss_dir = self.loss_dir(
                    pos_dir_cls_preds,
                    pos_dir_targets,
                    pos_dir_weights,
                    avg_factor=num_total_samples)
        else:
            loss_bbox = pos_bbox_pred.sum()
            if self.use_direction_classifier:
                loss_dir = pos_dir_cls_preds.sum()

zhangwenwei's avatar
zhangwenwei committed
271
272
273
274
        return loss_cls, loss_bbox, loss_dir

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
zhangwenwei's avatar
zhangwenwei committed
275
        """Convert the rotation difference to difference in sine function.
zhangwenwei's avatar
zhangwenwei committed
276
277

        Args:
zhangwenwei's avatar
zhangwenwei committed
278
279
280
281
            boxes1 (torch.Tensor): Original Boxes in shape (NxC), where C>=7
                and the 7th dimension is rotation dimension.
            boxes2 (torch.Tensor): Target boxes in shape (NxC), where C>=7 and
                the 7th dimension is rotation dimension.
zhangwenwei's avatar
zhangwenwei committed
282
283

        Returns:
zhangwenwei's avatar
zhangwenwei committed
284
285
            tuple[torch.Tensor]: ``boxes1`` and ``boxes2`` whose 7th \
                dimensions are changed.
zhangwenwei's avatar
zhangwenwei committed
286
287
288
289
290
291
292
293
294
        """
        rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos(
            boxes2[..., 6:7])
        rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[...,
                                                                         6:7])
        boxes1 = torch.cat(
            [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1)
        boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]],
                           dim=-1)
zhangwenwei's avatar
zhangwenwei committed
295
296
        return boxes1, boxes2

297
    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds'))
zhangwenwei's avatar
zhangwenwei committed
298
299
300
301
302
303
304
305
    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
wuyuefeng's avatar
wuyuefeng committed
306
307
308
        """Calculate losses.

        Args:
liyinhao's avatar
liyinhao committed
309
310
311
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
wuyuefeng's avatar
wuyuefeng committed
312
                class predictions.
zhangwenwei's avatar
zhangwenwei committed
313
            gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Gt bboxes
wuyuefeng's avatar
wuyuefeng committed
314
                of each sample.
liyinhao's avatar
liyinhao committed
315
            gt_labels (list[torch.Tensor]): Gt labels of each sample.
wuyuefeng's avatar
wuyuefeng committed
316
            input_metas (list[dict]): Contain pcd and img's meta info.
liyinhao's avatar
liyinhao committed
317
318
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.
wuyuefeng's avatar
wuyuefeng committed
319
320

        Returns:
zhangwenwei's avatar
zhangwenwei committed
321
322
            dict[str, list[torch.Tensor]]: Classification, bbox, and \
                direction losses of each level.
323

324
325
                - loss_cls (list[torch.Tensor]): Classification losses.
                - loss_bbox (list[torch.Tensor]): Box regression losses.
zhangwenwei's avatar
zhangwenwei committed
326
                - loss_dir (list[torch.Tensor]): Direction classification \
327
                    losses.
wuyuefeng's avatar
wuyuefeng committed
328
        """
zhangwenwei's avatar
zhangwenwei committed
329
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
330
331
332
333
        assert len(featmap_sizes) == self.anchor_generator.num_levels
        device = cls_scores[0].device
        anchor_list = self.get_anchors(
            featmap_sizes, input_metas, device=device)
zhangwenwei's avatar
zhangwenwei committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.anchor_target_3d(
            anchor_list,
            gt_bboxes,
            input_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            num_classes=self.num_classes,
            label_channels=label_channels,
            sampling=self.sampling)

        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         dir_targets_list, dir_weights_list, num_total_pos,
         num_total_neg) = cls_reg_targets
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)

        # num_total_samples = None
        losses_cls, losses_bbox, losses_dir = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            dir_cls_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            dir_targets_list,
            dir_weights_list,
            num_total_samples=num_total_samples)
        return dict(
zhangwenwei's avatar
zhangwenwei committed
367
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dir=losses_dir)
zhangwenwei's avatar
zhangwenwei committed
368
369
370
371
372
373

    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   input_metas,
zhangwenwei's avatar
zhangwenwei committed
374
                   cfg=None,
zhangwenwei's avatar
zhangwenwei committed
375
                   rescale=False):
wuyuefeng's avatar
wuyuefeng committed
376
377
378
        """Get bboxes of anchor head.

        Args:
liyinhao's avatar
liyinhao committed
379
380
381
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
wuyuefeng's avatar
wuyuefeng committed
382
383
                class predictions.
            input_metas (list[dict]): Contain pcd and img's meta info.
384
            cfg (None | :obj:`ConfigDict`): Training or testing config.
wangtai's avatar
wangtai committed
385
            rescale (list[torch.Tensor]): Whether th rescale bbox.
wuyuefeng's avatar
wuyuefeng committed
386
387

        Returns:
wangtai's avatar
wangtai committed
388
            list[tuple]: Prediction resultes of batches.
wuyuefeng's avatar
wuyuefeng committed
389
        """
zhangwenwei's avatar
zhangwenwei committed
390
391
392
        assert len(cls_scores) == len(bbox_preds)
        assert len(cls_scores) == len(dir_cls_preds)
        num_levels = len(cls_scores)
393
394
        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        device = cls_scores[0].device
395
        mlvl_anchors = self.anchor_generator.grid_anchors(
396
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
397
        mlvl_anchors = [
398
            anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors
zhangwenwei's avatar
zhangwenwei committed
399
        ]
400

zhangwenwei's avatar
zhangwenwei committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        result_list = []
        for img_id in range(len(input_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            dir_cls_pred_list = [
                dir_cls_preds[i][img_id].detach() for i in range(num_levels)
            ]

            input_meta = input_metas[img_id]
            proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
                                               dir_cls_pred_list, mlvl_anchors,
zhangwenwei's avatar
zhangwenwei committed
416
                                               input_meta, cfg, rescale)
zhangwenwei's avatar
zhangwenwei committed
417
418
419
420
421
422
423
424
425
            result_list.append(proposals)
        return result_list

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
zhangwenwei's avatar
zhangwenwei committed
426
                          cfg=None,
zhangwenwei's avatar
zhangwenwei committed
427
                          rescale=False):
wuyuefeng's avatar
wuyuefeng committed
428
429
430
        """Get bboxes of single branch.

        Args:
liyinhao's avatar
liyinhao committed
431
432
433
434
435
            cls_scores (torch.Tensor): Class score in single batch.
            bbox_preds (torch.Tensor): Bbox prediction in single batch.
            dir_cls_preds (torch.Tensor): Predictions of direction class
                in single batch.
            mlvl_anchors (List[torch.Tensor]): Multi-level anchors
wuyuefeng's avatar
wuyuefeng committed
436
437
                in single batch.
            input_meta (list[dict]): Contain pcd and img's meta info.
438
            cfg (None | :obj:`ConfigDict`): Training or testing config.
liyinhao's avatar
liyinhao committed
439
            rescale (list[torch.Tensor]): whether th rescale bbox.
wuyuefeng's avatar
wuyuefeng committed
440
441
442

        Returns:
            tuple: Contain predictions of single batch.
443

zhangwenwei's avatar
zhangwenwei committed
444
                - bboxes (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes.
liyinhao's avatar
liyinhao committed
445
446
                - scores (torch.Tensor): Class score of each bbox.
                - labels (torch.Tensor): Label of each bbox.
wuyuefeng's avatar
wuyuefeng committed
447
        """
zhangwenwei's avatar
zhangwenwei committed
448
        cfg = self.test_cfg if cfg is None else cfg
zhangwenwei's avatar
zhangwenwei committed
449
450
451
452
453
454
455
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
zhangwenwei's avatar
zhangwenwei committed
456
457
458
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]
zhangwenwei's avatar
zhangwenwei committed
459
460
461
462
463
464
465
466
467
468

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

zhangwenwei's avatar
zhangwenwei committed
469
470
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
zhangwenwei's avatar
zhangwenwei committed
471
472
473
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
zhangwenwei's avatar
zhangwenwei committed
474
475
476
477
478
479
480
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_score = dir_cls_score[topk_inds]

481
            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
zhangwenwei's avatar
zhangwenwei committed
482
483
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
zhangwenwei's avatar
zhangwenwei committed
484
            mlvl_dir_scores.append(dir_cls_score)
zhangwenwei's avatar
zhangwenwei committed
485
486

        mlvl_bboxes = torch.cat(mlvl_bboxes)
zhangwenwei's avatar
zhangwenwei committed
487
488
        mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d'](
            mlvl_bboxes, box_dim=self.box_code_size).bev)
zhangwenwei's avatar
zhangwenwei committed
489
490
491
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

zhangwenwei's avatar
zhangwenwei committed
492
493
494
495
496
497
498
499
500
501
502
        if self.use_sigmoid_cls:
            # Add a dummy background class to the front when using sigmoid
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        score_thr = cfg.get('score_thr', 0)
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_scores, score_thr, cfg.max_num,
                                       cfg, mlvl_dir_scores)
        bboxes, scores, labels, dir_scores = results
        if bboxes.shape[0] > 0:
zhangwenwei's avatar
zhangwenwei committed
503
504
            dir_rot = limit_period(bboxes[..., 6] - self.dir_offset,
                                   self.dir_limit_offset, np.pi)
zhangwenwei's avatar
zhangwenwei committed
505
            bboxes[..., 6] = (
zhangwenwei's avatar
zhangwenwei committed
506
                dir_rot + self.dir_offset +
zhangwenwei's avatar
zhangwenwei committed
507
                np.pi * dir_scores.to(bboxes.dtype))
508
        bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size)
zhangwenwei's avatar
zhangwenwei committed
509
        return bboxes, scores, labels