test_votenet.py 2.72 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
import unittest

import torch
from mmengine import DefaultScope

from mmdet3d.registry import MODELS
7
8
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
                             setup_seed)
jshilong's avatar
jshilong committed
9
10
11
12
13
14
15
16
17


class TestVotenet(unittest.TestCase):

    def test_voxel_net(self):
        import mmdet3d.models

        assert hasattr(mmdet3d.models, 'VoteNet')
        DefaultScope.get_instance('test_vote_net', scope_name='mmdet3d')
18
19
        setup_seed(0)
        voxel_net_cfg = get_detector_cfg('votenet/votenet_8xb16_sunrgbd-3d.py')
jshilong's avatar
jshilong committed
20
21
        model = MODELS.build(voxel_net_cfg)
        num_gt_instance = 50
22
        packed_inputs = create_detector_inputs(num_gt_instance=num_gt_instance)
23
24
25

        # TODO: Support aug test
        # aug_data = [
26
27
        #     create_detector_inputs(num_gt_instance=num_gt_instance),
        #     create_detector_inputs(num_gt_instance=num_gt_instance + 1)
28
29
30
31
32
33
34
35
36
37
38
        # ]
        # # test_aug_test
        # metainfo = {
        #     'pcd_scale_factor': 1,
        #     'pcd_horizontal_flip': 1,
        #     'pcd_vertical_flip': 1,
        #     'box_type_3d': LiDARInstance3DBoxes
        # # }
        # for item in aug_data:
        #     item['data_sample'].set_metainfo(metainfo)

jshilong's avatar
jshilong committed
39
40
41
42
        if torch.cuda.is_available():
            model = model.cuda()
            # test simple_test
            with torch.no_grad():
43
44
45
                data = model.data_preprocessor(packed_inputs, True)
                results = model.forward(**data, mode='predict')
            self.assertEqual(len(results), 1)
jshilong's avatar
jshilong committed
46
47
48
49
            self.assertIn('bboxes_3d', results[0].pred_instances_3d)
            self.assertIn('scores_3d', results[0].pred_instances_3d)
            self.assertIn('labels_3d', results[0].pred_instances_3d)

50
51
52
53
54
55
56
57
58
            # TODO: Support aug_test
            # batch_inputs, data_samples = model.data_preprocessor(
            #     aug_data, True)
            # aug_results = model.forward(
            #     batch_inputs, data_samples, mode='predict')

            # self.assertIn('bboxes_3d', aug_results[0].pred_instances_3d)
            # self.assertIn('scores_3d', aug_results[0].pred_instances_3d)
            # self.assertIn('labels_3d', aug_results[0].pred_instances_3d)
jshilong's avatar
jshilong committed
59

jshilong's avatar
jshilong committed
60
61
            # save the memory
            with torch.no_grad():
62
                losses = model.forward(**data, mode='loss')
jshilong's avatar
jshilong committed
63
64
65
66
67
68
69
70
71
72

            self.assertGreater(losses['vote_loss'], 0)
            self.assertGreater(losses['objectness_loss'], 0)
            self.assertGreater(losses['semantic_loss'], 0)
            self.assertGreater(losses['dir_res_loss'], 0)
            self.assertGreater(losses['size_class_loss'], 0)
            self.assertGreater(losses['size_res_loss'], 0)
            self.assertGreater(losses['size_res_loss'], 0)

        # TODO test_aug_test