test_votenet.py 2.77 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import unittest

import torch
from mmengine import DefaultScope

from mmdet3d.registry import MODELS
from tests.utils.model_utils import (_create_detector_inputs,
                                     _get_detector_cfg, _setup_seed)


class TestVotenet(unittest.TestCase):

    def test_voxel_net(self):
        import mmdet3d.models

        assert hasattr(mmdet3d.models, 'VoteNet')
        DefaultScope.get_instance('test_vote_net', scope_name='mmdet3d')
        _setup_seed(0)
        voxel_net_cfg = _get_detector_cfg(
20
            'votenet/votenet_8xb16_sunrgbd-3d.py')
jshilong's avatar
jshilong committed
21
22
        model = MODELS.build(voxel_net_cfg)
        num_gt_instance = 50
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
        packed_inputs = _create_detector_inputs(
            num_gt_instance=num_gt_instance)

        # TODO: Support aug test
        # aug_data = [
        #     _create_detector_inputs(num_gt_instance=num_gt_instance),
        #     _create_detector_inputs(num_gt_instance=num_gt_instance + 1)
        # ]
        # # test_aug_test
        # metainfo = {
        #     'pcd_scale_factor': 1,
        #     'pcd_horizontal_flip': 1,
        #     'pcd_vertical_flip': 1,
        #     'box_type_3d': LiDARInstance3DBoxes
        # # }
        # for item in aug_data:
        #     item['data_sample'].set_metainfo(metainfo)

jshilong's avatar
jshilong committed
41
42
43
44
        if torch.cuda.is_available():
            model = model.cuda()
            # test simple_test
            with torch.no_grad():
45
46
47
                data = model.data_preprocessor(packed_inputs, True)
                results = model.forward(**data, mode='predict')
            self.assertEqual(len(results), 1)
jshilong's avatar
jshilong committed
48
49
50
51
            self.assertIn('bboxes_3d', results[0].pred_instances_3d)
            self.assertIn('scores_3d', results[0].pred_instances_3d)
            self.assertIn('labels_3d', results[0].pred_instances_3d)

52
53
54
55
56
57
58
59
60
            # TODO: Support aug_test
            # batch_inputs, data_samples = model.data_preprocessor(
            #     aug_data, True)
            # aug_results = model.forward(
            #     batch_inputs, data_samples, mode='predict')

            # self.assertIn('bboxes_3d', aug_results[0].pred_instances_3d)
            # self.assertIn('scores_3d', aug_results[0].pred_instances_3d)
            # self.assertIn('labels_3d', aug_results[0].pred_instances_3d)
jshilong's avatar
jshilong committed
61

jshilong's avatar
jshilong committed
62
63
            # save the memory
            with torch.no_grad():
64
                losses = model.forward(**data, mode='loss')
jshilong's avatar
jshilong committed
65
66
67
68
69
70
71
72
73
74

            self.assertGreater(losses['vote_loss'], 0)
            self.assertGreater(losses['objectness_loss'], 0)
            self.assertGreater(losses['semantic_loss'], 0)
            self.assertGreater(losses['dir_res_loss'], 0)
            self.assertGreater(losses['size_class_loss'], 0)
            self.assertGreater(losses['size_res_loss'], 0)
            self.assertGreater(losses['size_res_loss'], 0)

        # TODO test_aug_test