"next_docs/en/user_guide/install" did not exist on "91f8cbe25a0896168a5a9ae2245144b02d588083"
test_kitti_metric.py 3.62 KB
Newer Older
VVsssssk's avatar
VVsssssk committed
1
2
3
import numpy as np
import pytest
import torch
4
from mmengine.structures import InstanceData
VVsssssk's avatar
VVsssssk committed
5

zhangshilong's avatar
zhangshilong committed
6
7
from mmdet3d.evaluation.metrics import KittiMetric
from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes
VVsssssk's avatar
VVsssssk committed
8
9
10
11
12

data_root = 'tests/data/kitti'


def _init_evaluate_input():
13
    metainfo = dict(sample_idx=0)
VVsssssk's avatar
VVsssssk committed
14
15
16
17
18
19
20
21
22
    predictions = Det3DDataSample()
    pred_instances_3d = InstanceData()
    pred_instances_3d.bboxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    pred_instances_3d.scores_3d = torch.Tensor([0.9])
    pred_instances_3d.labels_3d = torch.Tensor([0])

    predictions.pred_instances_3d = pred_instances_3d
23
    predictions.pred_instances = InstanceData()
24
    predictions.set_metainfo(metainfo)
VVsssssk's avatar
VVsssssk committed
25
    predictions = predictions.to_dict()
26
    return {}, [predictions]
VVsssssk's avatar
VVsssssk committed
27
28
29


def _init_multi_modal_evaluate_input():
30
    metainfo = dict(sample_idx=0)
VVsssssk's avatar
VVsssssk committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    predictions = Det3DDataSample()
    pred_instances_3d = InstanceData()
    pred_instances = InstanceData()
    pred_instances.bboxes = torch.tensor([[712.4, 143, 810.7, 307.92]])
    pred_instances.scores = torch.Tensor([0.9])
    pred_instances.labels = torch.Tensor([0])
    pred_instances_3d.bboxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))

    pred_instances_3d.scores_3d = torch.Tensor([0.9])
    pred_instances_3d.labels_3d = torch.Tensor([0])

    predictions.pred_instances_3d = pred_instances_3d
    predictions.pred_instances = pred_instances
46
    predictions.set_metainfo(metainfo)
VVsssssk's avatar
VVsssssk committed
47
    predictions = predictions.to_dict()
48
    return {}, [predictions]
VVsssssk's avatar
VVsssssk committed
49
50
51
52
53
54
55


def test_multi_modal_kitti_metric():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    kittimetric = KittiMetric(
        data_root + '/kitti_infos_train.pkl', metric=['mAP'])
56
    kittimetric.dataset_meta = dict(classes=['Pedestrian', 'Cyclist', 'Car'])
VVsssssk's avatar
VVsssssk committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    data_batch, predictions = _init_multi_modal_evaluate_input()
    kittimetric.process(data_batch, predictions)
    ap_dict = kittimetric.compute_metrics(kittimetric.results)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_BEV_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_2D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_moderate'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_hard'],
                      3.0303030303030307)


def test_kitti_metric_mAP():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    kittimetric = KittiMetric(
        data_root + '/kitti_infos_train.pkl', metric=['mAP'])
79
    kittimetric.dataset_meta = dict(classes=['Pedestrian', 'Cyclist', 'Car'])
VVsssssk's avatar
VVsssssk committed
80
81
82
83
84
85
86
87
88
89
    data_batch, predictions = _init_evaluate_input()
    kittimetric.process(data_batch, predictions)
    ap_dict = kittimetric.compute_metrics(kittimetric.results)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(
        ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_moderate'],
        3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_hard'],
                      3.0303030303030307)