test_kitti_metric.py 3.59 KB
Newer Older
VVsssssk's avatar
VVsssssk committed
1
2
3
4
5
import numpy as np
import pytest
import torch
from mmengine.data import InstanceData

zhangshilong's avatar
zhangshilong committed
6
7
from mmdet3d.evaluation.metrics import KittiMetric
from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes
VVsssssk's avatar
VVsssssk committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

data_root = 'tests/data/kitti'


def _init_evaluate_input():
    data_batch = [dict(data_sample=dict(sample_idx=0))]
    predictions = Det3DDataSample()
    pred_instances_3d = InstanceData()
    pred_instances_3d.bboxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    pred_instances_3d.scores_3d = torch.Tensor([0.9])
    pred_instances_3d.labels_3d = torch.Tensor([0])

    predictions.pred_instances_3d = pred_instances_3d
23
    predictions.pred_instances = InstanceData()
VVsssssk's avatar
VVsssssk committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    predictions = predictions.to_dict()
    return data_batch, [predictions]


def _init_multi_modal_evaluate_input():
    data_batch = [dict(data_sample=dict(sample_idx=0))]
    predictions = Det3DDataSample()
    pred_instances_3d = InstanceData()
    pred_instances = InstanceData()
    pred_instances.bboxes = torch.tensor([[712.4, 143, 810.7, 307.92]])
    pred_instances.scores = torch.Tensor([0.9])
    pred_instances.labels = torch.Tensor([0])
    pred_instances_3d.bboxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))

    pred_instances_3d.scores_3d = torch.Tensor([0.9])
    pred_instances_3d.labels_3d = torch.Tensor([0])

    predictions.pred_instances_3d = pred_instances_3d
    predictions.pred_instances = pred_instances
    predictions = predictions.to_dict()
    return data_batch, [predictions]


def test_multi_modal_kitti_metric():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    kittimetric = KittiMetric(
        data_root + '/kitti_infos_train.pkl', metric=['mAP'])
54
    kittimetric.dataset_meta = dict(CLASSES=['Pedestrian', 'Cyclist', 'Car'])
VVsssssk's avatar
VVsssssk committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    data_batch, predictions = _init_multi_modal_evaluate_input()
    kittimetric.process(data_batch, predictions)
    ap_dict = kittimetric.compute_metrics(kittimetric.results)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_BEV_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_2D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_moderate'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_hard'],
                      3.0303030303030307)


def test_kitti_metric_mAP():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    kittimetric = KittiMetric(
        data_root + '/kitti_infos_train.pkl', metric=['mAP'])
77
    kittimetric.dataset_meta = dict(CLASSES=['Pedestrian', 'Cyclist', 'Car'])
VVsssssk's avatar
VVsssssk committed
78
79
80
81
82
83
84
85
86
87
    data_batch, predictions = _init_evaluate_input()
    kittimetric.process(data_batch, predictions)
    ap_dict = kittimetric.compute_metrics(kittimetric.results)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(
        ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_moderate'],
        3.0303030303030307)
    assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_hard'],
                      3.0303030303030307)