nus-mono3d.py 3.68 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
dataset_type = 'NuScenesDataset'
twang's avatar
twang committed
2
3
4
5
6
data_root = 'data/nuscenes/'
class_names = [
    'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
    'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
7
metainfo = dict(classes=class_names)
twang's avatar
twang committed
8
9
# Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality.
ZCMax's avatar
ZCMax committed
10
11
input_modality = dict(use_lidar=False, use_camera=True)

12
file_client_args = dict(backend='disk')
ZCMax's avatar
ZCMax committed
13
14
15
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
16
17
18
19
20
21
22
23
# file_client_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/nuscenes/':
#         's3://openmmlab/datasets/detection3d/nuscenes/',
#         'data/nuscenes/':
#         's3://openmmlab/datasets/detection3d/nuscenes/'
#     }))
ZCMax's avatar
ZCMax committed
24

twang's avatar
twang committed
25
train_pipeline = [
26
    dict(type='LoadImageFromFileMono3D'),
twang's avatar
twang committed
27
28
29
30
31
32
33
34
    dict(
        type='LoadAnnotations3D',
        with_bbox=True,
        with_label=True,
        with_attr_label=True,
        with_bbox_3d=True,
        with_label_3d=True,
        with_bbox_depth=True),
35
    dict(type='Resize', scale=(1600, 900), keep_ratio=True),
twang's avatar
twang committed
36
37
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
ZCMax's avatar
ZCMax committed
38
        type='Pack3DDetInputs',
twang's avatar
twang committed
39
        keys=[
40
41
            'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels',
            'gt_bboxes_3d', 'gt_labels_3d', 'centers_2d', 'depths'
twang's avatar
twang committed
42
43
        ]),
]
ZCMax's avatar
ZCMax committed
44

twang's avatar
twang committed
45
test_pipeline = [
46
    dict(type='LoadImageFromFileMono3D'),
ZCMax's avatar
ZCMax committed
47
48
    dict(type='mmdet.Resize', scale=(1600, 900), keep_ratio=True),
    dict(type='Pack3DDetInputs', keys=['img'])
49
50
]

ZCMax's avatar
ZCMax committed
51
52
53
54
55
56
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
twang's avatar
twang committed
57
58
        type=dataset_type,
        data_root=data_root,
ZCMax's avatar
ZCMax committed
59
60
61
62
63
64
65
66
67
        data_prefix=dict(
            pts='',
            CAM_FRONT='samples/CAM_FRONT',
            CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT',
            CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT',
            CAM_BACK='samples/CAM_BACK',
            CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT',
            CAM_BACK_LEFT='samples/CAM_BACK_LEFT'),
        ann_file='nuscenes_infos_train.pkl',
68
        load_type='mv_image_based',
twang's avatar
twang committed
69
        pipeline=train_pipeline,
ZCMax's avatar
ZCMax committed
70
        metainfo=metainfo,
twang's avatar
twang committed
71
72
        modality=input_modality,
        test_mode=False,
ZCMax's avatar
ZCMax committed
73
74
75
76
77
78
79
80
81
82
83
        # we use box_type_3d='Camera' in monocular 3d
        # detection task
        box_type_3d='Camera',
        use_valid_flag=True))
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
twang's avatar
twang committed
84
85
        type=dataset_type,
        data_root=data_root,
ZCMax's avatar
ZCMax committed
86
87
88
89
90
91
92
93
94
        data_prefix=dict(
            pts='',
            CAM_FRONT='samples/CAM_FRONT',
            CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT',
            CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT',
            CAM_BACK='samples/CAM_BACK',
            CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT',
            CAM_BACK_LEFT='samples/CAM_BACK_LEFT'),
        ann_file='nuscenes_infos_val.pkl',
95
        load_type='mv_image_based',
twang's avatar
twang committed
96
97
        pipeline=test_pipeline,
        modality=input_modality,
ZCMax's avatar
ZCMax committed
98
        metainfo=metainfo,
twang's avatar
twang committed
99
        test_mode=True,
ZCMax's avatar
ZCMax committed
100
101
102
103
104
105
106
107
108
109
110
        box_type_3d='Camera',
        use_valid_flag=True))
test_dataloader = val_dataloader

val_evaluator = dict(
    type='NuScenesMetric',
    data_root=data_root,
    ann_file=data_root + 'nuscenes_infos_val.pkl',
    metric='bbox')

test_evaluator = val_evaluator
111
112
113
114

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')