formating.py 9.63 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
from mmcv.parallel import DataContainer as DC

4
from mmdet3d.core.bbox import BaseInstance3DBoxes
5
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet.datasets.pipelines import to_tensor
zhangwenwei's avatar
zhangwenwei committed
7
8
9
10

PIPELINES._module_dict.pop('DefaultFormatBundle')


11
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class DefaultFormatBundle(object):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields, including "img",
    "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
    - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor,
                       (3)to DataContainer (stack=True)
    """

    def __init__(self, ):
        return

    def __call__(self, results):
        if 'img' in results:
            if isinstance(results['img'], list):
                # process multiple imgs in single frame
                imgs = [img.transpose(2, 0, 1) for img in results['img']]
                imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
                results['img'] = DC(to_tensor(imgs), stack=True)
            else:
                img = np.ascontiguousarray(results['img'].transpose(2, 0, 1))
                results['img'] = DC(to_tensor(img), stack=True)
        for key in [
43
44
                'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels',
                'gt_labels_3d', 'pts_instance_mask', 'pts_semantic_mask'
zhangwenwei's avatar
zhangwenwei committed
45
46
47
48
49
50
51
        ]:
            if key not in results:
                continue
            if isinstance(results[key], list):
                results[key] = DC([to_tensor(res) for res in results[key]])
            else:
                results[key] = DC(to_tensor(results[key]))
52
53
54
55
56
57
58
59
        if 'gt_bboxes_3d' in results:
            if isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes):
                results['gt_bboxes_3d'] = DC(
                    results['gt_bboxes_3d'], cpu_only=True)
            else:
                results['gt_bboxes_3d'] = DC(
                    to_tensor(results['gt_bboxes_3d']))

zhangwenwei's avatar
zhangwenwei committed
60
61
62
63
64
65
66
67
68
69
70
        if 'gt_masks' in results:
            results['gt_masks'] = DC(results['gt_masks'], cpu_only=True)
        if 'gt_semantic_seg' in results:
            results['gt_semantic_seg'] = DC(
                to_tensor(results['gt_semantic_seg'][None, ...]), stack=True)
        return results

    def __repr__(self):
        return self.__class__.__name__


71
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
72
class Collect3D(object):
wangtai's avatar
wangtai committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    """Collect data from the loader relevant to the specific task.

    This is usually the last stage of the data loader pipeline. Typically keys
    is set to some subset of "img", "proposals", "gt_bboxes",
    "gt_bboxes_ignore", "gt_labels", and/or "gt_masks".

    The "img_meta" item is always populated.  The contents of the "img_meta"
    dictionary depends on "meta_keys". By default this includes:

        - "img_shape": shape of the image input to the network as a tuple
            (h, w, c).  Note that images may be zero padded on the
            bottom/right if the batch tensor is larger than this shape.
        - "scale_factor": a float indicating the preprocessing scale
        - "flip": a boolean indicating if image flip transform was used
        - "filename": path to the image file
        - "ori_shape": original shape of the image as a tuple (h, w, c)
        - "pad_shape": image shape after padding
        - "lidar2img": transform from lidar to image
        - 'pcd_horizontal_flip': a boolean indicating if point cloud is
            flipped horizontally
        - 'pcd_vertical_flip': a boolean indicating if point cloud is
            flipped vertically
        - 'box_mode_3d': 3D box mode
        - 'box_type_3d': 3D box type
        - 'img_norm_cfg': a dict of normalization information:
            - mean - per channel mean subtraction
            - std - per channel std divisor
            - to_rgb - bool indicating if bgr was converted to rgb
        - 'rect': rectification matrix
        - 'Trv2c': transformation from velodyne to camera coordinate
        - 'P2': transformation betweeen cameras
        - 'pcd_trans': point cloud transformations
        - 'sample_idx': sample index
        - 'pcd_scale_factor': point cloud scale factor
        - 'pcd_rotation': rotation applied to point cloud
        - 'pts_filename': path to point cloud file.

    Args:
        keys (Sequence[str]): Keys of results to be collected in ``data``.
        meta_keys (Sequence[str], optional): Meta keys to be converted to
            ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
            Default: ``('filename', 'ori_shape', 'img_shape', 'lidar2img',
            'pad_shape', 'scale_factor', 'flip', 'pcd_horizontal_flip',
            'pcd_vertical_flip', 'box_mode_3d', 'box_type_3d', 'img_norm_cfg',
            'rect', 'Trv2c', 'P2', 'pcd_trans', 'sample_idx',
            'pcd_scale_factor', 'pcd_rotation', 'pts_filename')``
    """
zhangwenwei's avatar
zhangwenwei committed
120
121
122
123

    def __init__(self,
                 keys,
                 meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img',
wuyuefeng's avatar
wuyuefeng committed
124
125
                            'pad_shape', 'scale_factor', 'flip',
                            'pcd_horizontal_flip', 'pcd_vertical_flip',
126
127
                            'box_mode_3d', 'box_type_3d', 'img_norm_cfg',
                            'rect', 'Trv2c', 'P2', 'pcd_trans', 'sample_idx',
liyinhao's avatar
liyinhao committed
128
129
                            'pcd_scale_factor', 'pcd_rotation',
                            'pts_filename')):
zhangwenwei's avatar
zhangwenwei committed
130
131
132
133
134
        self.keys = keys
        self.meta_keys = meta_keys

    def __call__(self, results):
        data = {}
zhangwenwei's avatar
zhangwenwei committed
135
        img_metas = {}
zhangwenwei's avatar
zhangwenwei committed
136
137
        for key in self.meta_keys:
            if key in results:
zhangwenwei's avatar
zhangwenwei committed
138
                img_metas[key] = results[key]
139

zhangwenwei's avatar
zhangwenwei committed
140
        data['img_metas'] = DC(img_metas, cpu_only=True)
zhangwenwei's avatar
zhangwenwei committed
141
142
143
144
145
146
147
148
149
        for key in self.keys:
            data[key] = results[key]
        return data

    def __repr__(self):
        return self.__class__.__name__ + '(keys={}, meta_keys={})'.format(
            self.keys, self.meta_keys)


150
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
class DefaultFormatBundle3D(DefaultFormatBundle):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields for voxels,
    including "proposals", "gt_bboxes", "gt_labels", "gt_masks" and
    "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    """

    def __init__(self, class_names, with_gt=True, with_label=True):
        super(DefaultFormatBundle3D, self).__init__()
        self.class_names = class_names
        self.with_gt = with_gt
        self.with_label = with_label

    def __call__(self, results):
        # Format 3D data
        for key in [
                'voxels', 'coors', 'voxel_centers', 'num_points', 'points'
        ]:
            if key not in results:
                continue
            results[key] = DC(to_tensor(results[key]), stack=False)

        if self.with_gt:
            # Clean GT bboxes in the final
            if 'gt_bboxes_3d_mask' in results:
                gt_bboxes_3d_mask = results['gt_bboxes_3d_mask']
                results['gt_bboxes_3d'] = results['gt_bboxes_3d'][
                    gt_bboxes_3d_mask]
187
188
189
                if 'gt_names_3d' in results:
                    results['gt_names_3d'] = results['gt_names_3d'][
                        gt_bboxes_3d_mask]
zhangwenwei's avatar
zhangwenwei committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            if 'gt_bboxes_mask' in results:
                gt_bboxes_mask = results['gt_bboxes_mask']
                if 'gt_bboxes' in results:
                    results['gt_bboxes'] = results['gt_bboxes'][gt_bboxes_mask]
                results['gt_names'] = results['gt_names'][gt_bboxes_mask]
            if self.with_label:
                if 'gt_names' in results and len(results['gt_names']) == 0:
                    results['gt_labels'] = np.array([], dtype=np.int64)
                elif 'gt_names' in results and isinstance(
                        results['gt_names'][0], list):
                    # gt_labels might be a list of list in multi-view setting
                    results['gt_labels'] = [
                        np.array([self.class_names.index(n) for n in res],
                                 dtype=np.int64) for res in results['gt_names']
                    ]
                elif 'gt_names' in results:
                    results['gt_labels'] = np.array([
                        self.class_names.index(n) for n in results['gt_names']
                    ],
                                                    dtype=np.int64)
                # we still assume one pipeline for one frame LiDAR
                # thus, the 3D name is list[string]
212
213
214
215
216
217
                if 'gt_names_3d' in results:
                    results['gt_labels_3d'] = np.array([
                        self.class_names.index(n)
                        for n in results['gt_names_3d']
                    ],
                                                       dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
218
219
220
221
222
223
224
225
226
        results = super(DefaultFormatBundle3D, self).__call__(results)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(class_names={}, '.format(self.class_names)
        repr_str += 'with_gt={}, with_label={})'.format(
            self.with_gt, self.with_label)
        return repr_str