"docs_zh_CN/vscode:/vscode.git/clone" did not exist on "c9d464c36094f062add8183d5e4bcef570f83cbc"
formating.py 6.64 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
from mmcv.parallel import DataContainer as DC

zhangwenwei's avatar
zhangwenwei committed
4
5
from mmdet.datasets.pipelines import to_tensor
from mmdet.datasets.registry import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

PIPELINES._module_dict.pop('DefaultFormatBundle')


@PIPELINES.register_module
class DefaultFormatBundle(object):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields, including "img",
    "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
    - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor,
                       (3)to DataContainer (stack=True)
    """

    def __init__(self, ):
        return

    def __call__(self, results):
        if 'img' in results:
            if isinstance(results['img'], list):
                # process multiple imgs in single frame
                imgs = [img.transpose(2, 0, 1) for img in results['img']]
                imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
                results['img'] = DC(to_tensor(imgs), stack=True)
            else:
                img = np.ascontiguousarray(results['img'].transpose(2, 0, 1))
                results['img'] = DC(to_tensor(img), stack=True)
        for key in [
                'proposals', 'gt_bboxes', 'gt_bboxes_3d', 'gt_bboxes_ignore',
                'gt_labels', 'gt_labels_3d'
        ]:
            if key not in results:
                continue
            if isinstance(results[key], list):
                results[key] = DC([to_tensor(res) for res in results[key]])
            else:
                results[key] = DC(to_tensor(results[key]))
        if 'gt_masks' in results:
            results['gt_masks'] = DC(results['gt_masks'], cpu_only=True)
        if 'gt_semantic_seg' in results:
            results['gt_semantic_seg'] = DC(
                to_tensor(results['gt_semantic_seg'][None, ...]), stack=True)
        return results

    def __repr__(self):
        return self.__class__.__name__


@PIPELINES.register_module
class Collect3D(object):

    def __init__(self,
                 keys,
                 pcd_shape=[1, 1600, 1408],
                 meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img',
                            'pad_shape', 'scale_factor', 'flip', 'pcd_flip',
                            'img_norm_cfg', 'rect', 'Trv2c', 'P2', 'pcd_trans',
                            'sample_idx', 'pcd_scale_factor', 'pcd_rotation')):
        self.keys = keys
        self.meta_keys = meta_keys
        self.pcd_shape = pcd_shape

    def __call__(self, results):
        data = {}
        img_meta = {}
        for key in self.meta_keys:
            if key in results:
                img_meta[key] = results[key]
        img_meta.update(pcd_shape=self.pcd_shape, pcd_pad_shape=self.pcd_shape)
        data['img_meta'] = DC(img_meta, cpu_only=True)
        for key in self.keys:
            data[key] = results[key]
        return data

    def __repr__(self):
        return self.__class__.__name__ + '(keys={}, meta_keys={})'.format(
            self.keys, self.meta_keys)


@PIPELINES.register_module
class DefaultFormatBundle3D(DefaultFormatBundle):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields for voxels,
    including "proposals", "gt_bboxes", "gt_labels", "gt_masks" and
    "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    """

    def __init__(self, class_names, with_gt=True, with_label=True):
        super(DefaultFormatBundle3D, self).__init__()
        self.class_names = class_names
        self.with_gt = with_gt
        self.with_label = with_label

    def __call__(self, results):
        # Format 3D data
        for key in [
                'voxels', 'coors', 'voxel_centers', 'num_points', 'points'
        ]:
            if key not in results:
                continue
            results[key] = DC(to_tensor(results[key]), stack=False)

        if self.with_gt:
            # Clean GT bboxes in the final
            if 'gt_bboxes_3d_mask' in results:
                gt_bboxes_3d_mask = results['gt_bboxes_3d_mask']
                results['gt_bboxes_3d'] = results['gt_bboxes_3d'][
                    gt_bboxes_3d_mask]
                results['gt_names_3d'] = results['gt_names_3d'][
                    gt_bboxes_3d_mask]
            if 'gt_bboxes_mask' in results:
                gt_bboxes_mask = results['gt_bboxes_mask']
                if 'gt_bboxes' in results:
                    results['gt_bboxes'] = results['gt_bboxes'][gt_bboxes_mask]
                results['gt_names'] = results['gt_names'][gt_bboxes_mask]
            if self.with_label:
                if 'gt_names' in results and len(results['gt_names']) == 0:
                    results['gt_labels'] = np.array([], dtype=np.int64)
                elif 'gt_names' in results and isinstance(
                        results['gt_names'][0], list):
                    # gt_labels might be a list of list in multi-view setting
                    results['gt_labels'] = [
                        np.array([self.class_names.index(n) for n in res],
                                 dtype=np.int64) for res in results['gt_names']
                    ]
                elif 'gt_names' in results:
                    results['gt_labels'] = np.array([
                        self.class_names.index(n) for n in results['gt_names']
                    ],
                                                    dtype=np.int64)
                # we still assume one pipeline for one frame LiDAR
                # thus, the 3D name is list[string]
                results['gt_labels_3d'] = np.array([
                    self.class_names.index(n) for n in results['gt_names_3d']
                ],
                                                   dtype=np.int64)
        results = super(DefaultFormatBundle3D, self).__call__(results)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(class_names={}, '.format(self.class_names)
        repr_str += 'with_gt={}, with_label={})'.format(
            self.with_gt, self.with_label)
        return repr_str